图像处理:Canny边缘检测原理(附代码实现)

本文详细介绍了Canny边缘检测算法的步骤,包括高斯滤波、梯度计算、非极大值抑制和双阈值确定边缘,并探讨了OpenCV中cv2.Canny()函数的使用。通过理解这些步骤,可以更好地理解和应用Canny边缘检测于图像处理领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Canny 边缘检测是一种使用多级边缘检测算法检测边缘的方法

OPENCV提供了函数cv2.Canny( )实现Canny边缘检测,虽然opencv为我们提供了很方便的使用,但是我们还是要理解Canny边缘检测的原理。

Canny 边缘检测步骤

Canny边缘检测分为如下几个步骤:

  • 步骤1:去噪。噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉。
  • 步骤2:计算梯度的幅度与方向。
  • 步骤3:非极大值抑制,即适当的让边缘变瘦。
  • 步骤4:确定边缘。使用双阈值算法确定最终的边缘信息。

下面对上述步骤分别进行简单的介绍

1. 应用高斯滤波去除图像噪声

由于图像边缘非常容易受到噪声的干扰,因此为了避免检测到错误的边缘信息,通常需要对图像进行滤波以去除噪声。滤波的目的是平滑一些纹理较弱的非边缘区域,以便得到更准确的边缘。在实际处理过程中,通常采用高斯滤波去除图像中的噪声。

下图演示了使用高斯滤波器 T 对原始图像O中像素值为226的像素点进行滤波,得到该点在滤波结果图像D内的值的过程。

在滤波过程中,我们通过滤波器对像素点周围的像素计算加权平均值,获取最终滤波结果。对于高斯滤波器T,越临近中心的点,权值越大。计算过程如下:

138 = 1/56(197*1+25*1+106*2+156*1+159*1+149*1+40*3+107*4+5*3+71*1+163*2+198*4+226*8+223*4+156*2+......+41*1+75*1)

当然,高斯滤波器(高斯核)并不是固定的,滤波器的大小也是可变的,高斯核的大小对于边缘检测的效果具有很重要的作用。滤波器的核越大,边缘信息对于噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农男孩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值