题目:1062
题目描述
输入两个不大于10的9次方的正整数,输出其最大公约数。
输入
输入两个正整数m和n,数据之间用空格隔开。
输出
输出一个整数,表示m和n的最大公约数。
样例输入
4 6
样例输出
2
提示
请查阅欧几里得定理及辗转相处法。
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求两个正整数之最大公约数的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
在实际解题中不用考虑较大数和较小数,因为如果是较小数除以较大数,其第二次相除的式子和较大数除以较小数的式子相同
例如:4和6
如果是较大数除以较小数
(1):6%4=2
(2):4%2=0
如果是较小数除以较大数
(1):4%6=4
(2):6%4=2
(3):4%2=0
由以上可得其最小公约数为2
#</