ZZULIOJ1062: 最大公约数

题目:1062
题目描述
输入两个不大于10的9次方的正整数,输出其最大公约数。
输入
输入两个正整数m和n,数据之间用空格隔开。
输出
输出一个整数,表示m和n的最大公约数。
样例输入
4 6
样例输出
2
提示
请查阅欧几里得定理及辗转相处法。

辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求两个正整数之最大公约数的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

在实际解题中不用考虑较大数和较小数,因为如果是较小数除以较大数,其第二次相除的式子和较大数除以较小数的式子相同
例如:4和6
如果是较大数除以较小数
(1):6%4=2
(2):4%2=0

如果是较小数除以较大数
(1):4%6=4
(2):6%4=2
(3):4%2=0
由以上可得其最小公约数为2

#</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

客场的消音器

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值