Spark学习1

Hadoop  0.X  1.X 现存问题

1、NameNode是单点的,易出现故障、制约集群发展

2、NameNode是单点的,受硬件制约、制约集群发展

3、MapReduce计算框架效率低,(设计理念原因)

           MapReduce用于单一数据计算,不适用于数据挖掘和数据迭代计算

            MapReduce框架主要应用于一次性数据计算:从存储介质中读取数据,然后进行处理,再存储回介质中。

4、MapReduce框架与Hadoop耦合性非常强,无法分离。

新型数据框架

Hive    Pig  Spark

Hadoop  2.X  Yarn

1、NameNode是高可用的,易出现故障、制约集群发展

2、将资源调度和计算进行了解耦合

3、可以替换计算框架

Spark出现

1、Spark基于MR框架,其优化数据计算过程,使用内存代替计算结果

2、Spark基于Scala语言开发,更适用于迭代计算和数据挖掘计算

3、Spark计算模型丰富

                MapReduce框架中计算模型:Mapper Reducer

                Scala框架中计算模型:Map、Filter、GroupBy、sortBy

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值