Hadoop 0.X 1.X 现存问题
1、NameNode是单点的,易出现故障、制约集群发展
2、NameNode是单点的,受硬件制约、制约集群发展
3、MapReduce计算框架效率低,(设计理念原因)
MapReduce用于单一数据计算,不适用于数据挖掘和数据迭代计算
MapReduce框架主要应用于一次性数据计算:从存储介质中读取数据,然后进行处理,再存储回介质中。
4、MapReduce框架与Hadoop耦合性非常强,无法分离。
新型数据框架
Hive Pig Spark
Hadoop 2.X Yarn
1、NameNode是高可用的,易出现故障、制约集群发展
2、将资源调度和计算进行了解耦合
3、可以替换计算框架
Spark出现
1、Spark基于MR框架,其优化数据计算过程,使用内存代替计算结果
2、Spark基于Scala语言开发,更适用于迭代计算和数据挖掘计算
3、Spark计算模型丰富
MapReduce框架中计算模型:Mapper Reducer
Scala框架中计算模型:Map、Filter、GroupBy、sortBy