1. 背景介绍
1.1 强化学习的崛起
近年来,人工智能(AI)领域取得了突破性进展,其中深度强化学习(Deep Reinforcement Learning,DRL)作为机器学习的一个重要分支,备受瞩目。DRL 将深度学习的感知能力与强化学习的决策能力相结合,使智能体能够在复杂环境中学习并做出最优决策。
1.2 DQN:深度Q学习的里程碑
深度Q学习(Deep Q-Network,DQN)是 DRL 领域的一个里程碑式算法,由 DeepMind 团队于 2013 年提出。DQN 将深度神经网络与 Q 学习算法相结合,成功解决了传统 Q 学习在高维状态空间中的局限性,并在 Atari 游戏中取得了超越人类水平的表现。
1.3 一切皆是映射:DQN 的核心思想
DQN 的核心思想可以概括为“一切皆是映射”。它将环境状态、动作和奖励映射到一个 Q 值函数中,通过学习这个函数来指导智能体的决策。这种映射关系使得 DQN 能够处理复杂的环境,并学习到有效的策略。
2. 核心概念与联系
2.1 强化学习的基本要素
强化学习涉及智能体(Agent)、环境(Environment)、状态(State)、动作(Action)和奖励(Reward)等基本要素。智能体通过与环境交互,不断学习并优化其策略,以最大化累积奖励。