AI原生应用中检索增强生成的性能提升技巧
关键词:检索增强生成(RAG)、大语言模型(LLM)、向量检索、性能优化、AI原生应用
摘要:在AI原生应用中,检索增强生成(Retrieval-Augmented Generation, RAG)通过“先检索后生成”的模式,解决了大语言模型(LLM)“知识过时”“事实错误”等痛点。本文将从RAG的核心原理出发,结合生活案例与代码实战,详细拆解检索阶段、生成阶段及系统级的性能优化技巧,帮助开发者构建更高效、更精准的AI应用。
背景介绍
目的和范围
随着ChatGPT、GPT-4等大语言模型(LLM)的普及,AI原生应用(如智能客服、文档助手、教育答疑)的核心能力从“规则驱动”转向“模型生成”。但LLM存在两大短板:
- 知识截止问题:模型训练数据有时间限制(如GPT-4知识截止到2023年12月),无法处理最新信息;
- 幻觉(Hallucination)问题:模型可能生成与事实不符的“虚假内容”。
检索增强生成(RAG)通过“检索外部知识库→将结果输入LLM生成”的模式,完美弥补了这两大短板。本文将聚焦“如何提升RAG系统的性能”,覆盖检索效率、生成质量、系统延迟等核心指标的优化技巧。
预期读者
本文适合