文章目录
C语言中的最大公约数(GCD)
在数学中,最大公约数(Greatest Common Divisor, GCD)是指两个或更多整数的公约数中最大的一个。简单来说,最大公约数是能够整除两个整数的最大数。最大公约数的计算在很多算法中都有广泛的应用,如分数约分、加密算法等。
在 C 语言中,我们可以通过多种方式来计算最大公约数。常见的算法包括暴力法和欧几里得算法。本文将详细介绍如何在 C 语言中计算最大公约数,并介绍欧几里得算法的实现方法。
📌 1. 最大公约数的定义
给定两个整数 a
和 b
,它们的最大公约数是能够同时整除这两个数的最大整数。通常记作 gcd(a, b)
。
例如:
gcd(12, 18) = 6
,因为 12 和 18 的公约数有 1, 2, 3, 6,其中最大的就是 6。gcd(25, 30) = 5
,因为 25 和 30 的公约数有 1, 5,其中最大的就是 5。
📌 2. 欧几里得算法
欧几里得算法(Euclidean Algorithm)是计算两个整数最大公约数的一种非常高效的方法。该算法的核心思想是:
<两个数的最大公约数等于较小的数和两数之差的最大公约数。