语义增强信号的学习

这是一篇纯文字帖,大家可以随便看看

语义增强的概念

​​语义增强​​是通过引入外部知识或高级语义信息,提升模型对输入数据(如图像、视频、文本)的​​深层理解能力​​的技术。其核心目标是:

  • ​​弥补低级特征的不足​​(如像素、词向量)。

  • ​​建立更贴近人类认知的语义关联​​(如“猫→哺乳动物→宠物”)。

为什么要进行语义增强?

可能是因为视觉局限,视频帧模糊、遮挡或者视角单一。仅靠像素级特征难以识别高阶语义

文本歧义,语言大模型生成的描述太过于笼统,比如画面是一个人在打网球,但是大模型生成的描述是一个人在运动,缺乏细节

模态鸿沟,视觉和文本特征天然存在分布差异,直接融合会导致偏差(二者在特征空间中的距离是很远的,即使是描述同一特征,大家可以看我上一篇分析的论文中有个图,我直接放在底下,大家就可以看到视觉和文本在特征空间上的距离有多远)

那么语义增强的目的肯定也是为了解决这些问题了

​如何实现语义增强?

外部知识注入 :融合知识图片,领域术语库。将跑步关联到有氧运动 再到体育运动,提升动作分类粒度

多层级语义建模:分层提取特征  低级-高级 视频帧--边缘/颜色--物体检测--场景理解--行为推理

跨模态对齐增强:使用clip/blip等模型对齐视觉与文本的语义空间  文本“狗”与图像中的狗特征在共享空间中距离更近

语义增强的核心技术

1.知识图谱融合

步骤:检测视频中的实体(如物体、人物) 从知识图谱中提取关联属性(如 网球拍--用于打网球--属于体育器材) 将属性注入分类器或描述生成模块

优势:解决罕见类别或长尾问题(比如槌球这类小众运动)

2.多模态语义蒸馏

方法:用大模型生成视频的多样化描述(如“足球比赛”-激烈对抗-进球瞬间) 通过对比学习,将多样性描述压缩为紧凑的语义向量

效果:增强模型对同一内容不同表述的鲁棒性

3.对抗性语义增强

思路:生成对抗文本(如遮挡视频帧),强制模型学习更本质的语义特征。示例:遮挡“网球拍”后,模型仍能通过人物姿势推断“打网球”。

大家简单看一下公式,我后面会出一个关于对抗训练的帖子

与校准策略的结合

语义增强可直接提升模态内校准(intra-c)和模态间校准(inter-C)的效果

模态内校准:更准确的语义描述--更可靠的文本特征权重  比如:若LLM生成可能是狗或者狼,通过知识图谱关联属性后,偏向狗

模态间校准:跨模态语义一致性--动态调整β值  若视觉检测到“球场”且文本生成“足球”,β倾向于文本模态(因场景语义明确)

举例说明

任务:视频动作识别(输入:模糊视频片段)

如果无语义增强,可能视觉看着是跑步,文本生成是一个人在快速移动。如果有的话 知识图片关联 快速移动+草地+穿球衣 得到是足球比赛  LLM生成文本:球员在草地上冲刺 得到正确分类

大家可以自己去看个语义增强的例子,加深印象 这个就是纯文字描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值