云服务器Ubuntu成功本地部署ppocr-gpu项目

一、云服务随便选一个

二、一定要选Anaconda3创建虚拟环境

官网: https://repo.anaconda.com/archive/

在里面找到自己系统的安装包,然后右击复制链接安装。

wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

解压安装包

bash https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

创建虚拟环境并且激活。

conda create -n ppocr python=3.8 -y
conda activate ppocr

三、最重要的一步,安装paddlepaddle-gpu和相关依赖

1.首先查询nvidia-smi系统的显卡最高支持的cuda版本,比如本系统是12.1,这样意味着我们安装不要超过这个版本的就行。

官网PaddleOCR/doc/doc_ch/environment.md at release/2.7 · PaddlePaddle/PaddleOCRt

开始使用_飞桨-源于产业实践的开源深度学习平台

推荐的cuda版本是10.1或者10.2,cudnn是7.6,cudnn是cuda的一个加速推理的框架。 

建议一定不要走最新的版本的,不然很容易版本冲突,我测试了很多版本,在旧版本的里面2.2版本以下已经淘汰了,不能再走官网的镜像下载了。

conda install paddlepaddle-gpu==2.4.2 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/

 这里解释一下conda install 和 pip install 有什么区别,conda isntall 可以安装相关依赖,像上述安装代码paddlepaddle-gpu==2.4.2 是纯python包,但是cudatoolkit=10.2 是cuda依赖包,还会自动安装对应版本的cudnn包,如图所示。

可以看到通过conda install 自动安装了cudnn包,版本也是合适的。

安装好了paddlepaddle-gpu,通过python命令测试一下有没有安装成功。

import paddle
paddle.utils.run_check()

如果出现下述报错,ImportError: libcudart.so.10.2: cannot open shared object file: No such file or directory ------但是我们通过 conda list 发现我们安装的cuda 10.2版本是存在的,就说明我们的cuda 包的环境配置没有弄好。

通过配置export LD_LIBRARY_PATH=/root/anaconda3/envs/ppocr_gpu/lib:$LD_LIBRARY_PATH可以临时配置cuda包的环境(只再当前会话窗口有效),这样程序就能找到。”/root/anaconda3/envs/ppocr_gpu/lib“ 换成你们自己的实际地址。

安装好的paddlepaddle-gpu版本要设置到环境变量中
# 添加Conda环境的lib路径到LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/root/anaconda3/envs/ppocr_gpu/lib:$LD_LIBRARY_PATH
# 编辑.bashrc或环境配置文件
echo 'export LD_LIBRARY_PATH=/root/anaconda3/envs/ppocr_gpu/lib:$LD_LIBRARY_PATH' >> ~/.bashrc
# 重新加载配置
source ~/.bashrc

永久设置

echo 'export LD_LIBRARY_PATH=/root/anaconda3/envs/ppocr_gpu/lib:$LD_LIBRARY_PATH' >> ~/.bashrc

上述代码是将

'export LD_LIBRARY_PATH=/root/anaconda3/envs/ppocr_gpu/lib:$LD_LIBRARY_PATH'追加到~/.bashrc配置中的意思,然后刷新一下source ~/.bashrc,就设置好了全局变量。

现在我们就可以看到 :PaddlePaddle is installed successfully!,说明我们最难的已经安装好了。 

四、使用ppocr功能

下载ppocr包 ,这里就直接安装这个,不要指定版本,只要没有安装没有报错就行

# 安装PaddleOCR库
pip install paddleocr

参考官网文档,PaddleOCR/doc/doc_ch/quickstart.md at release/2.7 · PaddlePaddle/PaddleOCR

创一个ng文件夹,放入一些图片测试。

from paddleocr import PaddleOCR# 可视化函数

# need to run only once to download and load model into memory

# 导入PaddleOCR主类(用于文字检测和识别)初始化OCR引擎,关键参数:
# use_angle_cls 是否启用图片旋转矫正
ocr = PaddleOCR(use_angle_cls=True, lang='ch')

img_path3 = r"/mnt/workspace/ng/测试0.png"

# 执行OCR识别:
# • cls=True 表示在识别时使用初始化时设置的方向分类器
# • 完整处理流程:文本检测 -> 方向分类 -> 文字识别
result = ocr.ocr(img_path3, cls=True)

# [
#     [ [[左上x,左上y], [右上x,右上y], [右下x,右下y], [左下x,左下y]], ("识别文字", 置信度) ],
#     [ ... ],  # 其他识别结果
# ]
print("************************************************")
print(result)
print("************************************************")
# text_list = [line[1][0] for line_group in result for line in line_group for line_group in result]
text_list = [line[1][0] for group in result for line in group]
print(text_list)
print("识别文本:", "\n".join(text_list))
print("************************************************")

原图如下:

扫描件PDF读取,安装pip install PyMuPDF==1.24.1

from paddleocr import PaddleOCR

def get_image_info(img_path):
    
    ocr = PaddleOCR(use_angle_cls=True, lang='ch')

    # 读取图片文件
    result = ocr.ocr(img_path, cls=True)

    # 提取识别文本列表
    text_list = [line[1][0] for group in result for line in group]
    # print(text_list)

    # 按行输出文本列表的信息
    image_text = "\n".join(text_list)
    # print("识别文本:", image_text)
    print(image_text)
    return image_text


# # 本地的pdf路径 需要先下载PyMuPDF库,把PDF的每一页变成图片
img_path3 = r"/mnt/workspace/ng/仲裁申请书(1).pdf"

print(get_image_info(img_path3))

五、看到这的小伙伴给个三连吧,我也是很辛苦找教程,网上很难找到ppocr-gpu的云服务器安装教程,我测试了好久才自己跑通的,有什么问题可以留言评论,或者加入我的AIGC学习交流群讨论:1051011605

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC_北苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值