一、引言:从“意念控制”到“算法移植”
在过去十年中,脑机接口技术逐步从实验室研究走向临床试验和商业原型,其发展路径逐渐呈现两种明显的技术流派:以Neuralink为代表的侵入式高密度脑信号采集路线,以及以清华等高校主导的基于类脑芯片与非侵入式信号融合的算法驱动路线。前者通过柔性电极深入皮层,直接读取神经电信号,实现高精度的运动意图解码;后者则尝试利用脉冲神经网络和类脑芯片,在更具安全性和可扩展性的硬件上构建神经计算系统。
这一变化引出了一个新的核心问题:随着硬件形式和接口方式的多样化,是否有可能将当前在侵入式脑机接口中表现卓越的解码与控制算法迁移到另一种完全不同的神经系统架构上?换言之,我们是否正在经历从“控制设备”到“算法平台”的范式转变?如果这一转变成立,其意义将不仅限于功能的迁移,更代表着脑机接口从硬件驱动向算法驱动的分水岭时刻。
脑机接口技术的演进正在逐步摆脱对单一硬件体系的依赖:在Neuralink高密度信号解码模型取得突破的同时,清华等机构的类脑芯片已经具备通过低功耗脉冲神经网络处理脑电数据的能力。若能实现算法层面的跨体系兼容与迁移,一套通用的神经解码算法就有可能同时适配侵入式和非侵入式设备,从而加速整个行业从定制化走向平台化。
二、Neuralink的技术范式
1. 硬件基础
Neuralink采用超细柔性电极(称为“线状探针”)插入小鼠或人类大脑皮层,实现高密度的神经信号采集与刺激。这些电极直径在数十微米量级,可同时记录上千个神经元的动作电位,并通过无线芯片实现数据传输。其硬件系统包括:
-
柔性高密度电极阵列:适应脑组织形变、减少免疫反应;
-
高带宽无线传输模块:支持实时神经数据上传;
-
定点神经刺激器:可实现双向脑机接口的闭环刺激。
整体设计以侵入性为代价换取了高采样率与高空间分辨率,为算法解码提供了接近“原始神经元级别”的信号基础。
2. 算法结构
Neuralink的核心算法分为两类:运动意图解码和语言意图解码,它们主要基于深度学习技术:
-
运动意图解码:
-
利用RNN / LSTM / Transformer 类神经网络,根据多通道神经信号预测手指、手臂、光标的三维运动轨迹;
-
包括时间序列预处理、降噪、特征提取和序列预测模块;
-
-
语言意图解码:
-
从语区皮层提取神经放电模式,使用自编码器或Transformer映射到语义空间;
-
实现“想象说话”时的文本重建;
-
这些模型依赖高采样密度的数据集训练,通常需要数十分钟到数小时的个体校准过程。
3. 系统生态与策略
Neuralink的整体策略是打造“人机共生”生态系统,以硬件-算法协同为核心,其特点:
-
闭环操控:可同时记录与刺激,实现神经调控;
-
软件配套平台:用于实时监测、在线模型更新;
-
高侵入性带来的伦理挑战:需手术植入,临床门槛高;
-
个性化模型依赖重:每位用户需要重新训练解码器。
这一范式虽然在精度和实时性方面具有极大优势,但其算法高度绑定于高密度神经信号输入,也因此对其他类型的脑机接口难以直接复用。
三、清华类脑芯片的路线
1. 硬件架构
清华系脑机研究与“类脑计算”路线紧密相关,硬件多依托国产神经形态芯片(如 Tianjic、Darwin、天机类脑芯片)。这些芯片特点是: