2017-2018 ACM-ICPC, NEERC, Moscow Subregional Contest C(树链剖分构造)

该文章描述了一个关于树的数据结构问题,要求在1000000×201000000×20的网格中放置树的节点,使树边不相交。作者提出使用树链剖分的方法,通过在每次遇到轻链时切换到下一列来实现路径的不相交。算法包括两个DFS过程,一个用于计算节点的大小和heavy-light分解,另一个用于生成解决方案并输出节点的位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题意:给出一棵树,将这棵树的节点放在一个1000000×201000000×20的网格中,每个格只能有一个节点,使得树边不相交(树边为线段),输出一种方案。

思路:考虑到树链剖分,一整条路径最多有logn个轻链,所以只需要在每次轻链时换到下一列即可

代码:

vector<int> h[N];
int sz[N], hs[N];
int now[N];
pair<int,int> ans[N];
void dfs1(int u, int f)
{
    sz[u] = 1, hs[u] = -1;
    for(auto v : h[u])
    {
        if(v == f) continue;
        dfs1(v, u);
        sz[u]+=sz[v];
        if(hs[u] == -1 || (sz[v] > sz[hs[u]])) hs[u] = v;
    }
}
void dfs2(int u, int f, int d)
{
    now[d]++;
    ans[u] = {now[d], d};
    for(auto v : h[u])
    {
        if(v == f || v == hs[u]) continue;
        dfs2(v, u, d + 1);
    }
    if(hs[u]!=-1) dfs2(hs[u], u, d);
}
void solve()
{
    int n;
    cin >>n;
    for(int i = 1; i < n; ++i)
    {
        int a, b;
        cin >>a >>b;
        h[a].push_back(b);
        h[b].push_back(a);
    }
    dfs1(1, 0);
    dfs2(1, 0, 1);
    for(int i = 1; i <= n; ++i)
    {
        cout<<ans[i].x<<' '<<ans[i].y<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值