语义分割(semantic segmentation)
语义分割指将图片中的每个像素分类到对应的类别,语义区域的标注和预测是 像素级的,语义分割标注的像素级的边界框显然更加精细。应用:背景虚化
图像分割和实例分割
- 图像分割将图像划分为若干组成区域,这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以下图中的图像作为输入,图像分割可能会将狗分为两个区域:一个覆盖以黑色为主的嘴和眼睛,另一个覆盖以黄色为主的其余部分身体。
- 实例分割也叫同时检测并分割(simultaneous detection and segmentation),它研究如何识别图像中各个目标实例的像素级区域。与语义分割不同,实例分割不仅需要区分语义,还要区分不同的目标实例。例如,如果图像中有两条狗,则实例分割需要区分像素属于的两条狗中的哪一条。
语义分割vs实例分割:
语义分割:只关心像素是哪一个类别
实例分割:区别具体对每个实例的识别
代码实现
%matplotlib inline
import os
import torch
import torchvision
from d2l import torch as d2l
# 导入文件
d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar',
'4e443f8a2eca6b1dac8a6c57641b67dd40621a49')
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')
#加载图片
def read_voc_images(voc_dir, is_train=True):
"""读取所有VOC图像并标注"""
txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
'train.txt' if is_train else 'val.txt')
mode = torchvision.io.image.ImageReadMode.RGB
with open(txt_fname, 'r') as f:
images = f.read().split()
features, labels = [], []
for i, fname in enumerate(images):
# 分别读取图片和像素特征点,png的文件大保存了图像质量,jpg文件小,适合存储色彩丰富、细节复杂的照片
features.append(torchvision.io.read_image(os.path.join(
voc_dir, 'JPEGImages', f'{
fname}.jpg')))
labels.append(torchvision.io.read_image(os.path.join(
voc_dir, 'SegmentationClass' ,f'{
fname}.png'), mode))
return features, labels
train_features, train_labels = read_voc_images(voc_dir, True)
- 展示图片
n = 5
imgs = train_features[0:n] + train_labels[0:n]
imgs = [img.permute(1,2,0) for img in imgs]
d2l.show_images(imgs, 2, n);