转置卷积与全卷积网络FCN在语义分割中的应用

转置卷积与全卷积网络FCN在语义分割中的应用

转置卷积

卷积不会增大输入的高宽,通常的情况是输入不变和减半;转置卷积可以用来增大输入高宽。

如果我们将 X \mathsf{X} X输入卷积层 f f f来获得输出 Y = f ( X ) \mathsf{Y}=f(\mathsf{X}) Y=f(X)并创造一个与 f f f有相同的超参数、但输出通道数是 X \mathsf{X} X中通道数的转置卷积层 g g g,那么 g ( Y ) g(Y) g(Y)的形状将与 X \mathsf{X} X相同。

转置卷积用于逆转下采样导致的空间尺寸减小。卷积操作指的是下采样,指把图片的宽和高变小;转置卷积指的是上采样,用来增大图片的宽和高。

关键点:对一个输入而言,对其先进行卷积,再进行转置卷积,保证两次操作的超参数相同可以保证输入和输出的形状相同。

在这里插入图片描述

基本操作

实现基本的转置卷积运算(依照上图编写算法)

def trans_conv(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

# 实现函数
X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)
-----------------------------------------------------
tensor([[ 0.,  0.,  1.],
        [ 0.,  4.,  6.],
        [ 4., 12.,  9.]])

# 封装好的高级API,多了一个通道和批量大小数
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)
------------------------------------------------------
tensor([[[[ 0.,  0.,  1.],
          [ 0.,  4.,  6.],
          [ 4., 12.,  9.]]]], grad_fn=<ConvolutionBackward0>)

填充、步幅和多通道

与常规的卷积不同,在转置卷积中,填充被应用于输出。

# 填充设置为1,转置卷积的输出中的第一的行和列
# 将一圈数据删除
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)
------------------------------------------------
tensor([[[[4.]]]], grad_fn=<ConvolutionBackward0>)

步幅指定为中间结果(输出),不是输入。如下的例子将步幅从1更改为2。

在这里插入图片描述

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值