Codeforces 1819A - Constructive Problem

文章讨论了一种编程问题,涉及找到数组中未出现的最小非负整数(MEX),并通过一次操作将数组的连续子序列转换为特定值来使MEX加1。关键在于确定何时和如何进行这种变换,以确保不会消除小于MEX的数。解决方案包括跟踪MEX+1的数的位置,以及处理所有数都已存在的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接Problem - 1819A - Codeforces

构造题,稍微沾了点贪心。

题意大致为将一个非负整数数组中没有出现过的最小非负整数MEX = x,经过一次操作,该操作为将该数组的一个连续子序列全部变为k,k为非负整数,可以使得该数组的MEX 变成x+1,

例如:0 2 2 0

其中第一个未出现的数为1,要把他变成2,只要将所有的2变为1即可。

分析:

只要在0~n-1中有数缺失,那么肯定会存在一个数大于MEX。

观察例子可以发现,要让MEX加1,必须要将原来数组中等于MEX+1的数全部消除掉,并且由于每次操作只能操作一个连续子序列,在消除时,还要判断这一段连续子序列会不会让0~MEX-1的数消失,如果有消失则无法实现目标,所以需要记录MEX+1的数在原数组中的起始位置和结束位置,。

如果要消除它们的话,那么把他们都变成MEX是最优的,即k=MEX,如果把他们变成别的数的话,又需要选择别的数,会更复杂。

那么,如果原来数组中没有MEX+1会怎么样?如果有比MEX+1的数大的数的话,其实他们所起到的效果是一样的,但是不需要记录他的最大最小下标,因为只要把一个数变成MEX就可以实现我们的目标。

所以只要记录第一个比MEX大的数就可以。

最后一种情况,如果所有的数都有的话,即0~n-1的数都存在,那么现在的MEX=n,要把MEX变为n+1,这时已经没有比MEX大的数了,只能从前面选,而0~n-1的数,只要有一个数的数量大于1,那么就可以把其中一个变成MEX,实现将MEX+1。

代码:

#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
int s[200005];
int main(){
	int t;
	cin >> t;
	while(t --){
		int n;
		int cnt = 0;
		int flag = 0;
		cin >> n;
		unordered_map<int,int> minn,maxx;
		for(int i = 1; i <= n; i ++){
			int x;
			cin >> x;
			if(minn[x]){		//去重,如果这个数已经出现过,就不用记录到数组中了,只需要记录最大最小下标。
				maxx[x] = i;
			}
			else{
				s[++cnt] = x;	//cnt即去重后的数的数量。
				minn[x] = i;
				maxx[x] = i;
			}
		}
		sort(s + 1,s + 1 + cnt);
		int x = -1,y = -1;
		int idx = -1;
		for(int i = 1;i <= cnt; i++){
			if(s[i] != i - 1){
				x = i -1;//MEX
				y = s[i];//第一个比要弄成的数大的数
				break;
			}
			idx = i;	//比MEX小的最大数的下标
		}

		if(x == -1){		//0~n-1的数都存在。
			x = n;
			for(int i = 1; i <= cnt; i ++){
				if(maxx[s[i]] - minn[s[i]] > 0){ 	//最大下标减去最小下标大于0,肯定不止一个。
					flag = 0;						//只要有,就YES。
					break;
				}
				else
					flag = 1;
			}
		}
		if(y == x + 1){							//y > x + 1不需要判断,一定是YES,因为只要变更一个数,他的minn=maxx
			for(int i = 1; i <= idx;i ++){	//判断是否有比MEX更小的数成为MEX,即没有出现在原数组中。
				if(maxx[y] > maxx[s[i]] && minn[y] < minn[s[i]])
					flag = 1;
			}
		}
			if(flag)
				puts("NO");
			
			else
				puts("YES");
	}
	
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值