
YOLOv5原创自研
文章平均质量分 92
自研原创独家创新,适合paper,全网首发;打造精品专栏,强调原创高质量;
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
AI小怪兽
YOLO骨灰级玩家,公众号:计算机视觉大作战,1)YOLOv5、v7、v8、v9、v10、11优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;订阅者私信添加本人微信!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv5独家原创改进:SPPF原创自研创新 | SPPF创新结构,重新设计全局平均池化层和全局最大池化层,增强全局视角信息和不同尺度大小的特征
强烈推荐,适合直接使用,paper创新级别原创 2023-12-13 08:33:59 · 2138 阅读 · 0 评论 -
YOLOv5独家原创改进:原创自研 | 创新自研CPMS注意力,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM
本文自研创新改进:自研CPMS,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM原创 2023-12-04 13:02:19 · 1927 阅读 · 0 评论 -
《YOLOv5原创自研》专栏介绍 & CSDN独家改进创新实战&专栏目录
全网独家首发创新(原创),适合paper !!!原创 2023-12-02 14:54:43 · 3222 阅读 · 2 评论 -
YOLOv5独家原创改进:原创自研 | 自研独家创新MSAM注意力,通道注意力升级,魔改CBAM
MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力原创 2023-11-29 13:14:16 · 2517 阅读 · 6 评论 -
YOLOv5/YOLOv7独家原创改进:原创自研 | 新颖自研设计的BSAM注意力,基于CBAM升级
提出新颖的注意力BSAM(BiLevel SpatialAttention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的BiLevel Attention+Spartial Attention原创 2023-11-04 13:53:20 · 2028 阅读 · 16 评论 -
YOLOv5优化:特征融合 | 金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块 | 25年7月最新成果
问题点:特征融合对高性能视觉模型至关重要,但往往会带来难以承受的计算复杂度。然而,主流的基于注意力的融合方法通常计算开销巨大、实现复杂,在资源受限的场景中效率低下。原创 2025-07-18 15:45:49 · 46 阅读 · 0 评论 -
YOLOv5优化:增量调优方法 | 一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法,CVPR2025
如何与YOLOv5结合:1)C3与Mona结合;原创 2025-05-13 09:10:33 · 167 阅读 · 0 评论 -
YOLOv5首发优化:遥感目标检测 | 专为低质量遥感图像设计的边缘 - 高斯聚合(EGA)模块,解决低空间分辨率、传感器噪声、目标模糊、低光照退化和部分遮挡等限制
一种轻量级网络,其创新性地整合了专为低质量遥感图像设计的边缘 - 高斯聚合(EGA)模块。原创 2025-05-06 14:45:10 · 75 阅读 · 0 评论 -
YOLOv5首发优化:多尺度提取能力 | 一种多维联合注意力模块,扩张卷积创新提取不同尺度的特征信息,增强感受野和多尺度处理能力 | 2025年4月最新发表
引入了一种多维联合注意力模块,该模块利用扩张卷积来捕捉不同尺度的特征信息,从而增强了模型的感受野和多尺度处理能力。原创 2025-04-25 12:39:09 · 96 阅读 · 0 评论 -
YOLOv5优化:原创自研 | 带有注意力机制的隐藏状态混合器的状态空间(HSM-SSD),实现暴力涨点 | CVPR2025 EfficientViM
可以将 带有注意力机制的隐藏状态混合器的状态空间(HSM-SSD)中的注意力机制换成专栏其他注意力机制 ,那么你就能实现独一无二的原创。原创 2025-04-23 10:23:30 · 80 阅读 · 0 评论 -
YOLOv5优化:block优化 | 隐藏状态混合器的状态空间(HSM-SSD) | CVPR2025 EfficientViM
CVPR 2025 提出了基于一种快速有效的 SSD 层,称为隐藏状态混合器的状态空间对偶性(HSM-SSD),能够以更低的计算成本高效地捕捉全局依赖关系原创 2025-04-08 10:46:25 · 111 阅读 · 0 评论 -
YOLOv5涨点优化:原创自研 | 魔改Bottleneck,具备多尺度和特征通道融合的结构
魔改Bottleneck,具备多尺度和特征通道融合的结构,该模型在检测准确性方面都取得了良好的效果,尤其在缺陷检测方向。原创 2025-03-12 08:41:49 · 337 阅读 · 0 评论 -
YOLOv5优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
如何使用:1)直接StripBlock加入;2)结合C3二次创新;原创 2025-02-08 10:11:13 · 148 阅读 · 0 评论 -
YOLOv5全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
提出了一种基于尺度的动态(SD)损失,它根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力。原创 2025-02-08 10:01:42 · 321 阅读 · 0 评论 -
YOLOv5优化:图像去噪 | Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力 | AAAI2025
如何使用:1)结合C3二次创新使用;原创 2025-02-08 09:49:08 · 149 阅读 · 0 评论 -
YOLOv5优化:遥感去雾 | 新颖的双注意力块(DAB) | 24.12月最新成果
如何使用:1)直接双注意力块(DAB)加入;2)结合C3二次创新;原创 2025-02-08 09:16:45 · 113 阅读 · 0 评论 -
YOLOv5涨点优化:单图像超分辨率 | 空间频率注意力和通道转置注意力,恢复高频细节 | IJCAI-24
如何使用:1)结合C3二次创新使用原创 2025-02-07 17:29:24 · 95 阅读 · 0 评论 -
YOLOv5涨点优化:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024
如何使用:1)SHSABlock加入backbone使用;2)和C3结合二次创新;原创 2025-02-07 17:04:31 · 131 阅读 · 0 评论 -
YOLOv5优化:独家创新(SC_C_Detect)检测头结构创新,实现涨点 | 检测头新颖创新系列
独家创新(SC_C_Detect)检测头结构创新,适合科研创新度十足,强烈推荐原创 2023-11-01 19:27:02 · 1819 阅读 · 2 评论 -
YOLOv5优化:独家创新(Partial_C_Detect)检测头结构创新,实现涨点 | 检测头新颖创新系列
独家创新(Partial_C_Detect)检测头结构创新,适合科研创新度十足,强烈推荐原创 2023-11-01 19:26:22 · 1944 阅读 · 4 评论 -
YOLOv5独家原创改进:原创自研 | 自研独家创新FT_Conv,卷积高效结合傅里叶分数阶变换
卷积如何有效地和频域结合,引入分数阶傅里叶变换(FrFT)和分数阶Gabor变换(FrGT),最终创新到YOLOv8。使用方法:1)直接替换原来的C2f;2)放在backbone SPPF后使用;等原创 2023-11-30 09:02:18 · 907 阅读 · 0 评论 -
YOLOv5独家原创改进:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息
强烈推荐,适合直接使用,paper创新级别原创 2024-06-21 08:44:04 · 406 阅读 · 0 评论 -
YOLOv5改进:多尺度 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计| 2024年10月最新成果
GL-CRM是为了更好地处理多尺度变化而设计的原创 2024-10-26 08:42:21 · 256 阅读 · 0 评论 -
YOLOv5独家原创改进:原创自研 | 自研独家创新DSAM注意力 ,基于BiLevelRoutingAttention注意力升级
提出新颖的注意力DSAM(Deformable Bi-level SpatialAttention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的Deformable Bi-level Attention+Spartial Attention原创 2024-10-18 08:30:37 · 180 阅读 · 0 评论 -
YOLOv5全网独家改进:注意力独家魔改 | 可变形双级路由注意力(DBRA),魔改动态稀疏注意力的双层路由方法BiLevelRoutingAttention | 2024年10月最新
由可变形点选择的键值对缺乏语义相关性。BiFormer中的查询感知稀疏注意力旨在让每个查询聚焦于top-k路由区域。原创 2024-10-14 15:41:54 · 134 阅读 · 0 评论 -
YOLOv5改进:Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU
提出了一种新的IoU损失函数,称为统一IoU(Unified-IoU, UIoU),它更关注不同质量预测框之间的权重分配原创 2024-09-28 15:36:46 · 696 阅读 · 0 评论 -
YOLOv5独家改进:严重遮挡和重叠目标场景解决方案 | 一种新的自适应算法轻量级通道分割和变换(ALSS)模块,自适应特征提取优化策略
一种新的自适应算法轻量级通道分割和变换(ALSS)模块,自适应特征提取优化策略原创 2024-09-24 10:02:32 · 533 阅读 · 0 评论 -
YOLOv5独家改进:一种高效移动应用的卷积加性自注意Vision Transformer
并提出了一种名为卷积加性标记混合器(CATM) 的简化方法来降低计算开销原创 2024-08-31 12:43:52 · 195 阅读 · 0 评论 -
YOLO5全网首发:注意力独家魔改 | 具有切片操作的SimAM注意力,魔改SimAM助力小目标检测
魔改SimAM注意力,引入切片操作,增强小目标特征提取能力原创 2024-08-14 09:57:42 · 424 阅读 · 0 评论 -
YOLOv5独家原创改进:一种新颖的YOLO-JD网络,助力农业病害检测
提出了一种新颖的,基于YOLOv5改进的农业病害检测网络YOLO-JD原创 2024-08-05 08:36:28 · 472 阅读 · 0 评论 -
YOLOv5独家原创改进:注意力独家魔改 | 一种新颖的高效融合注意力机制,2024年最新注意力成果
提出了一种新颖的高效融合注意力机制,2024年最新注意力成果原创 2024-08-01 08:39:43 · 367 阅读 · 0 评论 -
YOLOv5独家改进:注意力独家魔改 | 一种新的空间和通道协同注意模块(SCSA),充分挖掘通道和空间注意之间的协同作用 | 2024年7月最新成果
提出了一种新的空间和通道协同注意模块(SCSA),由两部分组成:可共享的多语义空间注意(SMSA)和渐进式信道自注意(PCSA)原创 2024-07-12 09:05:52 · 1119 阅读 · 2 评论 -
YOLOv5独家改进:注意力独家魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络 | 2024年7月最新成果
蒙特卡罗注意力(MCAttn)模块使用基于随机抽样的池化操作来生成与尺度无关的注意力图。原创 2024-07-11 15:07:44 · 445 阅读 · 0 评论 -
YOLOv5独家原创改进:轻量化网络 | 基于特征重用和特征CSO的CAM,创新十足
通过增加基于特征重用和特征CSO的CAM,该模型在检测准确性和轻量化方面都取得了良好的效果。原创 2024-07-10 13:28:29 · 223 阅读 · 0 评论 -
YOLOv5原创改进:原创自研 | 一种新颖的跨通道交互的高效率通道注意力EMCA,ECA注意力改进版
基于ECA注意力,提出了一种新颖的EMCA注意力(跨通道交互的高效率通道注意力),保持高效轻量级的同时,提升多尺度提取能力原创 2023-12-16 13:17:08 · 1159 阅读 · 0 评论 -
YOLOv5全网独家改进: 卷积魔改 | 变形条状卷积,魔改DCNv3二次创新
强烈推荐:先到先得,paper级创新,直接使用;原创 2024-04-09 08:51:27 · 994 阅读 · 8 评论 -
YOLOv5独家原创改进: 特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合 | IEEE TIP 2024 浙大
提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。原创 2024-05-11 08:46:00 · 641 阅读 · 0 评论 -
YOLOv5首发改进:注意力魔改 | 高效的部分自注意力(PSA)模块,来自YOLOv10
高效的部分自注意力(PSA)模块,来自YOLOv10原创 2024-05-30 10:50:07 · 434 阅读 · 0 评论 -
YOLOv5首发改进: 轻量级改进 | 紧凑反转块(CIB)结构结合C3二次创新,来自YOLOv10
引入YOLOv10中的紧凑反转块(CIB)结构,该结构采用廉价的深度卷积进行空间混合和成本效益高的点卷积进行通道混合原创 2024-05-27 14:07:28 · 593 阅读 · 1 评论 -
YOLOv5独家改进:mamba系列 | 视觉态空间(VSS)块结合C3二次创新,轻量级改进 | VMamba2024年最新成果
视觉态空间(VSS)块结合C3二次创新,轻量级改进原创 2024-05-20 15:31:58 · 1054 阅读 · 0 评论