
YOLOv9魔术师
文章平均质量分 96
订阅者私信添加本人微信入群!!!
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
AI小怪兽
YOLO骨灰级玩家,公众号:计算机视觉大作战,1)YOLOv5、v7、v8、v9、v10、11优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;订阅者私信添加本人微信!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv9改进策略 :原创自研 | 一种新颖的跨通道交互的高效率通道注意力EMCA,ECA改进版
一种新颖的跨通道交互的高效率通道注意力EMCA,ECA改进版原创 2024-05-13 22:43:17 · 856 阅读 · 0 评论 -
YOLOv9改进策略 :卷积魔改 | 变形条状卷积,魔改DCNv3二次创新
变形条状卷积,DCNv3改进版本,不降低精度的前提下相比较DCNv3大幅度运算速度原创 2024-04-10 09:00:10 · 1353 阅读 · 4 评论 -
YOLOv9改进策略 :原创自研 | 自研MSAM注意力,通道注意力升级,魔改CBAM
MSAM(CBAM升级版):通道注意力具备多尺度性能,多分支深度卷积更好的提取多尺度特征,最后高效结合空间注意力原创 2024-04-06 10:51:03 · 1658 阅读 · 1 评论 -
YOLOv9改进策略 :原创自研 | 自研独家创新BSAM注意力 ,基于CBAM升级
自研独家创新BSAM注意力 ,基于CBAM升级原创 2024-03-31 16:10:01 · 1395 阅读 · 7 评论 -
《YOLOv9魔术师专栏》专栏介绍 & 专栏目录
《YOLOv9魔术师专栏》专栏介绍原创 2024-03-28 12:44:06 · 5138 阅读 · 11 评论 -
YOLOv9首发优化:注意力魔改 | 一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE),2025年5月最新发表
一种结合坐标注意力和内卷积的双坐标注意力特征提取(DCAFE)原创 2025-05-22 08:47:47 · 62 阅读 · 0 评论 -
YOLOv9优化:增量调优方法 | 一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法,CVPR2025
如何与YOLOv9结合:1)C2f与Mona结合;原创 2025-05-13 09:26:28 · 139 阅读 · 0 评论 -
YOLOv9首发优化:遥感目标检测 | 专为低质量遥感图像设计的边缘 - 高斯聚合(EGA)模块,解决低空间分辨率、传感器噪声、目标模糊、低光照退化和部分遮挡等限制
一种轻量级网络,其创新性地整合了专为低质量遥感图像设计的边缘 - 高斯聚合(EGA)模块。原创 2025-05-06 14:37:43 · 67 阅读 · 0 评论 -
YOLOv9首发优化:多尺度提取能力 | 一种多维联合注意力模块,扩张卷积创新提取不同尺度的特征信息,增强感受野和多尺度处理能力 | 2025年4月最新发表
引入了一种多维联合注意力模块,该模块利用扩张卷积来捕捉不同尺度的特征信息,从而增强了模型的感受野和多尺度处理能力。原创 2025-04-25 12:38:53 · 67 阅读 · 0 评论 -
YOLOv9优化:原创自研 | 带有注意力机制的隐藏状态混合器的状态空间(HSM-SSD),实现暴力涨点 | CVPR2025 EfficientViM
可以将 带有注意力机制的隐藏状态混合器的状态空间(HSM-SSD)中的注意力机制换成专栏其他注意力机制 ,那么你就能实现独一无二的原创。原创 2025-04-23 10:11:14 · 59 阅读 · 0 评论 -
YOLOv9优化:block优化 | 隐藏状态混合器的状态空间(HSM-SSD) | CVPR2025 EfficientViM
CVPR 2025 提出了基于一种快速有效的 SSD 层,称为隐藏状态混合器的状态空间对偶性(HSM-SSD),能够以更低的计算成本高效地捕捉全局依赖关系原创 2025-04-14 21:45:27 · 84 阅读 · 0 评论 -
YOLOv9原创自研:卷积魔改 | 一种新颖的风车形卷积(PConv)融合注意力机制,加强微弱小目标检测能力
为了进一步提升小目标检测能力,风车形卷积(PConv)融合注意力机制进一步提升小目标检测能力原创 2025-02-25 08:49:55 · 113 阅读 · 0 评论 -
YOLOv9优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
如何使用:代替原始的Conv直接作为卷积使用;原创 2025-02-25 08:46:14 · 128 阅读 · 0 评论 -
YOLOv9优化:大型条带卷积技术,更有效地提取空间信息 | Strip R-CNN,遥感目标检测 新SOTA,25年最新发表
大型条带卷积是遥感目标检测中极为有效的特征学习工具,能够精准捕捉并检测出不同长宽比的目标。原创 2025-02-06 16:29:49 · 135 阅读 · 0 评论 -
YOLOv9全网首发优化:损失篇 | AAAI 2025 | 一种基于尺度的动态(SD)损失,根据目标大小动态调整尺度和位置损失的影响,提高了网络检测不同尺度目标的能力
根据目标尺度动态调整Sloss和Lloss的影响系数,以减少标签不准确对损失函数稳定性的影响。较小的目标在BBox标签的Sloss中获得较低的关注权重。掩码标签可以提高检测精度,特别是对于较小或形状不规则的目标原创 2025-01-20 13:28:26 · 112 阅读 · 0 评论 -
YOLOv9全网首发优化:图像去噪 | Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力 | AAAI2025
提出了一种基于Transformer的盲点网络(TBSN)架构原创 2025-01-14 09:28:20 · 150 阅读 · 0 评论 -
YOLOv9原创自研:特征融合创新 | 一种具有切片操作的SimAM注意力的内容引导注意力(CGA)的混合融合方案
多个点组合优化 | 一种具有切片操作的SimAM注意力的内容引导注意力(CGA)的混合融合方案原创 2025-01-08 08:38:41 · 161 阅读 · 0 评论 -
YOLOv9全网首发优化:遥感去雾 | 新颖的双注意力块(DAB) | 24.12月最新成果
如何使用:1)直接双注意力块(DAB)加入;原创 2024-12-17 08:38:48 · 204 阅读 · 0 评论 -
YOLOv9涨点优化:单图像超分辨率 | 空间频率注意力和通道转置注意力,恢复高频细节 | IJCAI-24
空间频率注意力和通道转置注意力,恢复高频细节 | IJCAI-24原创 2024-12-10 07:48:39 · 254 阅读 · 0 评论 -
YOLOv9涨点优化:轻量化注意力 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024
如何使用:1)SHSABlock加入backbone使用原创 2024-12-06 08:41:24 · 387 阅读 · 1 评论 -
YOLOv9独家原创改进:原创自研 | 自研独家创新DSAM注意力 ,基于BiLevelRoutingAttention注意力升级
提出新颖的注意力DSAM(Deformable Bi-level SpatialAttention Module),创新度极佳,适合科研创新,效果秒杀CBAM,Channel Attention+Spartial Attention升级为新颖的Deformable Bi-level Attention+Spartial Attention原创 2024-10-19 09:58:51 · 255 阅读 · 0 评论 -
YOLOv9全网独家改进:注意力独家魔改 | 可变形双级路由注意力(DBRA),魔改动态稀疏注意力的双层路由方法BiLevelRoutingAttention | 2024年10月最新
为解决这些问题,我们提出了可变形双级路由注意力(DBRA)模块,该模块使用代理查询优化键值对的选择,并增强了注意力图中查询的解释性。原创 2024-10-14 15:45:59 · 161 阅读 · 0 评论 -
YOLOv9改进策略 :IoU优化 | Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU
Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU原创 2024-09-29 09:43:56 · 762 阅读 · 0 评论 -
YOLOv9独家改进:一种高效移动应用的卷积加性自注意Vision Transformer
轻量化改进之高效移动应用的卷积加性自注意Vision Transformer原创 2024-08-31 12:50:20 · 434 阅读 · 0 评论 -
YOLOv9全网首发:注意力独家魔改 | 具有切片操作的SimAM注意力,助力小目标检测
魔改SimAM注意力,引入切片操作,增强小目标特征提取能力原创 2024-08-16 08:48:50 · 509 阅读 · 0 评论 -
YOLOv9独家原创改进:注意力独家魔改 | 一种新颖的高效融合注意力机制,2024年最新注意力成果
EFAttention结合C2f并进行二次创新原创 2024-08-02 08:38:39 · 317 阅读 · 0 评论 -
YOLOv9独家改进:轻量级小目标改进 | SPDConv卷积+MLCA注意力+MSDA注意力,助力小目标检测
SPDConv卷积+MLCA注意力+MSDA注意力,助力小目标检测原创 2024-07-21 14:05:34 · 1730 阅读 · 3 评论 -
YOLOv9独家改进:注意力魔改 | 轻量级的 Mixed Local Channel Attention (MLCA),加强通道信息和空间信息提取能力
一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果原创 2024-07-21 13:43:24 · 652 阅读 · 0 评论 -
YOLOv9独家改进:注意力魔改 | 多尺度空洞注意力(MSDA),有效捕捉多尺度信息 | 中科院一区顶刊
多尺度空洞注意力(MSDA)采用多头的设计,在不同的头部使用不同的空洞率执行滑动窗口膨胀注意力(SWDA),全网独家首发,创新力度十足,适合科研原创 2024-07-21 13:31:30 · 800 阅读 · 0 评论 -
YOLOv9独家改进:注意力独家魔改 | 一种新的空间和通道协同注意模块(SCSA),充分挖掘通道和空间注意之间的协同作用 | 2024年7月最新成果
提出了一种新的空间和通道协同注意模块(SCSA),由两部分组成:可共享的多语义空间注意(SMSA)和渐进式信道自注意(PCSA)原创 2024-07-12 09:20:48 · 1722 阅读 · 3 评论 -
YOLOv9独家改进:注意力独家魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络 | 2024年7月最新成果
新颖度足够,全网独家首发推荐指数五颗星,适用于小目标检测,高效涨点原创 2024-07-12 08:44:24 · 420 阅读 · 0 评论 -
YOLOv9独家改进:注意力魔改 | 高效的部分自注意力(PSA)模块,来自YOLOv10
如何跟YOLOv9结合:PSA加入到backbone原创 2024-06-18 10:15:47 · 571 阅读 · 3 评论 -
YOLOv9改进策略 :主干backbone优化 | 轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!
MobileNetV4 轻量级backbone改进结果如下,238.9 GFLOPs降低至209.3 GFLOPs原创 2024-05-21 09:50:40 · 793 阅读 · 0 评论 -
YOLOv9独家原创改进: 主干backbone优化 | 微软新作StarNet:超强轻量级Backbone CVPR 2024
StarNet轻量级backbone改进结果如下,238.9 GFLOPs降低至192.7 GFLOPs原创 2024-05-21 09:50:21 · 1232 阅读 · 0 评论 -
YOLOv9独家原创改进:mamba系列 | 视觉态空间(VSS)块结合C2f二次创新,轻量级改进 | VMamba2024年最新成果
视觉态空间(VSS)块结合C2f二次创新,轻量级改进原创 2024-05-20 21:03:57 · 1369 阅读 · 1 评论 -
YOLOv9独家原创改进: 逐元素乘法(star operation)结合C2f二次创新 | 微软新作StarNet:超强轻量级Backbone CVPR 2024
逐元素乘法(star operation)在性能上始终优于求和,基于star operation块做二次创新原创 2024-05-15 20:34:26 · 949 阅读 · 1 评论 -
YOLOv9独家原创改进: 特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合 | IEEE TIP 2024 浙大
一种基于内容引导注意力(CGA)的混合融合原创 2024-05-11 08:46:54 · 792 阅读 · 0 评论 -
YOLOv9改进策略 :一种新颖的通用倒瓶颈(UIB)搜索块助力检测| 轻量化之王MobileNetV4
一种新颖的通用倒瓶颈(UIB)搜索块助力检测| 轻量化之王MobileNetV4原创 2024-05-10 08:45:14 · 524 阅读 · 0 评论 -
YOLOv9改进策略 :卷积魔改 | RepVGG-gelan,一种基于RepVGG的新型YOLO架构 | 2024年5月最新发表
RepVGG-GELAN在240.7 GFLOPs的工作速度下,比最新的现有方法提高了4.91%的精度和2.54%的AP50。原创 2024-05-08 09:14:36 · 467 阅读 · 0 评论 -
YOLOv9改进策略 :多个组合点如何组合创新,助力科研
多个组合点如何创新,解决订阅后不会将多个组合点合在一起,不会写yaml文件的烦恼。原创 2024-05-07 13:49:46 · 423 阅读 · 0 评论