一、引言
随着人工智能生成内容(AIGC)的兴起,越来越多的创作者开始探索高效的文字处理和AI绘图方式,而云电脑也正成为AIGC创作中的重要工具。相比于传统的本地硬件,云电脑在AIGC场景中展现出了显著的优势,云电脑通过提供强大的计算资源,轻松应对深度学习模型的训练和推理任务,而其弹性扩展性也允许用户按需调整资源,无需购买昂贵的硬件设备,极大地降低了成本。
本文将通过对ToDesk云电脑、顺网云、青椒云三款云电脑的亲测实践,探讨它们在AIGC创作中的表现,带您一同感受AI作图的高效体验。
二、硬件配置实测分析
强大的硬件配置不仅决定了AIGC模型能否顺畅运行,也决定了生成内容的质量和生成速度。这里我首先选取了各个云电脑产品的最高配置,对显卡性能、内存大小、存储速度等关键指标进行测评。
2.1、显卡性能对比
在处理对话生成、高复杂度的图像生成这类AIGC任务时,显卡扮演着至关重要的角色。各种大型预训练语言模型的训练和推理过程通常涉及大量的矩阵运算和浮点计算。显卡的并行处理能力决定了处理矩阵乘法、卷积操作等计算密集型任务的速度,决定了模型训练与推理的速度。这里我们选取了每款云电脑的最高配置进行对比:
云电脑产品 |
GPU |
CPU |
显存大小 |
存储 |
带宽 |
青椒云 |
A4000、GeForce RTX 4090 |
16核 |
16GB、24GB |
200g、300G |
10Mbps |
ToDesk云电脑 |
GeForce RTX 4090 |
16核 |
16GB |
300G |
20Mbps |
顺网云 |
GeForce RTX 4060 |
8核 |
8GB |
200G |
20Mbps |
综合来看,显卡方面:青椒云≈ToDesk>顺网云。青椒云和ToDesk的4090显卡在处理大型模型和高分辨率图像生成时具有明显的优势,顺网云虽然最高配置仅支持4060,可以胜任一些基本的任务。
2.2、内存与频率对比
在AIGC场景下,云电脑的内存大小与内存频率对创作过程中的模型加载、数据处理以及多任务运行有着至关重要的影响。内存的大小和频率决定了系统在运行时的数据存储能力和处理速度,进而影响创作的整体效率。
像LLama3、ChatGLM、Stable Diffusion通常具有数亿甚至数十亿的参数。这些模型在运行时,需要将其参数和临时数据加载到内存中。如果内存不足,系统将无法有效地加载整个模型,导致频繁的硬盘交换(paging)或内存溢出,进而极大地降低模型的推理速度和创作效率。而频率较低的内存将导致CPU或GPU等待数据输入,产生性能瓶颈。而高频内存能够保障GPU和CPU在推理和训练过程中保持高效的数据吞吐。
经过分析,各个平台的高配版云电脑的内存大小和速度如下:
云电脑产品 |
内存大小 |
速度 |
ToDesk云电脑 |
64GB |
3200MHz |
顺网云 |
32GB |
3200MHz |
青椒云 |
32GB |
3200MHz |
对比来看,各云平台的均配备了大小32GB,速度3200MHz的内存,且ToDesk云电脑AIGC藏宝地为64GB的内存,内存方面:ToDesk云电脑>青椒云=顺网云。
2.3、网络带宽对比
经常从事AIGC科研和创作的同学可能明白,预训练模型往往需要从云端资源库或第三方平台进行下载,其大小一般都在10GB以上。
如上图所示,像基本版的SD模型,大小在30GB以上,而最近比较火的LLama3模型,更是达到了300+GB。在带宽较低的情况下(如10-20 Mbps),下载这样的模型可能需要一个小时甚至更长时间;而在高带宽环境下(如100-500 Mbps),下载时间可以缩短到一个小时内或更少,而这也涉及到了很核心的成本问题。
这里本节使用测速