算法,删除字符串最少操作次数,动态规划

 给定一个只有字母的字符串,每次操作可以是删除某一个字母或者删除连续几个相同的字母,比如abccd可以变为abd或者accd,这算一次操作,求一个字符串删除完需要的最少操作次数。

要解决这个问题,我们可以使用动态规划(Dynamic Programming, DP)的思想。我们可以定义一个DP数组,其中dp[i][j]表示将字符串的子串str[i:j+1]删除完所需要的最少操作次数。

def min_deletions(s: str) -> int:
    n = len(s)
    dp = [[0] * n for _ in range(n)]
    
    for i in range(n):
        dp[i][i] = 1 

    for length in range(2, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
            dp[i][j] = dp[i + 1][j] + 1 
            for k in range(i + 1, j + 1):
                if s[k] == s[i]:
                    dp[i][j] = min(dp[i][j], dp[i + 1][k - 1] + dp[k][j])
    
    return dp[0][n - 1]

s = "dacbcecbec"
print(min_deletions(s))  

具体思路如下:

  1. 初始化DP数组:

    • 如果子串str[i:j+1]只有一个字符,即i == j,那么需要1次操作将其删除,即dp[i][j] = 1
    • 对于其他情况,初始时可以设dp[i][j] = j - i + 1,即每个字符单独删除。
  2. 状态转移:

    • 当我们考虑删除子串str[i:j+1]时,有两种可能:
      1. 单独删除str[i],那么dp[i][j] = 1 + dp[i+1][j]
      2. 找到与str[i]相同的字符ki < k <= j),尝试将它们一起删除,那么dp[i][j] = min(dp[i][j], dp[i+1][k-1] + dp[k][j]),其中dp[i+1][k-1]表示删除str[i+1:k]需要的最少操作次数,dp[k][j]表示删除str[k:j+1]需要的最少操作次数。
  3. 通过上述状态转移方程填充DP数组,最终我们需要的结果就是dp[0][n-1],其中n是字符串的长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值