给定一个只有字母的字符串,每次操作可以是删除某一个字母或者删除连续几个相同的字母,比如abccd可以变为abd或者accd,这算一次操作,求一个字符串删除完需要的最少操作次数。
要解决这个问题,我们可以使用动态规划(Dynamic Programming, DP)的思想。我们可以定义一个DP数组,其中dp[i][j]
表示将字符串的子串str[i:j+1]
删除完所需要的最少操作次数。
def min_deletions(s: str) -> int:
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = 1
for length in range(2, n + 1):
for i in range(n - length + 1):
j = i + length - 1
dp[i][j] = dp[i + 1][j] + 1
for k in range(i + 1, j + 1):
if s[k] == s[i]:
dp[i][j] = min(dp[i][j], dp[i + 1][k - 1] + dp[k][j])
return dp[0][n - 1]
s = "dacbcecbec"
print(min_deletions(s))
具体思路如下:
-
初始化DP数组:
- 如果子串
str[i:j+1]
只有一个字符,即i == j
,那么需要1次操作将其删除,即dp[i][j] = 1
。 - 对于其他情况,初始时可以设
dp[i][j] = j - i + 1
,即每个字符单独删除。
- 如果子串
-
状态转移:
- 当我们考虑删除子串
str[i:j+1]
时,有两种可能:- 单独删除
str[i]
,那么dp[i][j] = 1 + dp[i+1][j]
。 - 找到与
str[i]
相同的字符k
(i < k <= j
),尝试将它们一起删除,那么dp[i][j] = min(dp[i][j], dp[i+1][k-1] + dp[k][j])
,其中dp[i+1][k-1]
表示删除str[i+1:k]
需要的最少操作次数,dp[k][j]
表示删除str[k:j+1]
需要的最少操作次数。
- 单独删除
- 当我们考虑删除子串
-
通过上述状态转移方程填充DP数组,最终我们需要的结果就是
dp[0][n-1]
,其中n
是字符串的长度。