目录
1.拉普拉斯变换
1.1拉普拉斯变换的定义以及作用
在时域里面研究系统的性质时常常会通过一个微分方程来描述系统的性质,当微分方程的阶数较小时,我们可以通过微积分运算来求解,但往往我们遇到的控制系统微分方程都较为复杂,通过复杂的微积分运算难以求得,而如果通过拉普拉斯变换将时域系统变换到复数域系统分析,仅仅需要通过简单的代数运算就能求得输出函数的复数域函数,再通过拉普拉斯逆变换就可以求得输出函数的时域形式。
1.1.1拉普拉斯变换的数学表达式
1.1.2拉普拉斯变换的存在条件
1.2常见函数的拉普拉斯变换
①单位阶跃函数
②单位斜坡函数
③单位加速度函数
④指数函数
⑤正弦函数和余弦函数
1.3拉普拉斯变换的性质
1.4拉普拉斯变换在解微分方程中的应用
利用拉普拉斯变换的微分性质:
求出F(s)后,再通过拉普拉斯逆变换求得f(t)
2.传递函数
2.1传递函数的定义
设参考输入c(t),输出信号r(t):
则传递函数G(s)定义为: