Python实现卡方检验和相关性分析

目录

卡方检验

 卡方检验的statsmodels实现

 配对卡方检验

 相关分析(关联性分析)概述

相关系数的计算原理 

 相关分析的Python实现


卡方检验

 卡方检验的主要用途

  • 两个率或两个构成比比较的卡方检验
  • 多个率或多个构成比比较的卡方检验
  • 分类资料的相关分析

卡方检验的基本原理

H0 :观察频数与期望频数没有差别

其原理为考察基于H0的理论频数分布和实际频数分布间的差异大 小,据此求出相应的P值

案例: 所有受访家庭会按照家庭年收入被分为低收入家庭和高收入家 庭两类,现希望考察不同收入级别的家庭其轿车拥有率是否相同。

 

 基于H0成立,即观察频数和期望频数无差别,也就是两组变量 (家庭收入级别与是否拥有轿车)相互不产生影响,两组变量不相 关,如果检验P值很高,则接受H0;如果检验P值很低,则检验不通 过,观察频数和期望频数有差别,两组变量相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值