用Python实现简单的人脸识别,10分钟拿下(附源码)

本文介绍如何利用Python和OpenCV实现简单的人脸识别。首先,我们需要准备相关库,如CV2、os、numpy和PIL。然后,通过预训练的分类器找到人脸。接着,使用OpenCV的LBPHFaceRecognizer算法建立对照模型进行训练。在识别阶段,程序可以检测、校验并输出结果。在实践过程中,可能会遇到版本不匹配等问题,但可以通过调整Python版本和安装相应库来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

今天,我们用Python实现简单的人脸识别技术!

Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的。这里介绍的是准确性比较高的一种。

一、首先

梳理一下实现人脸识别需要进行的步骤:

 

流程大致如此,在此之前,要先让人脸被准确地找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间。

既然用的是python,那自然少不了包的使用了,在看代码之前,我们先将整个项目所需要的包罗列一下:

· CV2(Opencv):图像识别,摄像头调用

· os:文件操作

· numpy:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库

· PIL:Python Imaging Library,Python平台事实上是图像处理的标准库

二、接下来

1.对照人脸获取

#-----获取人脸样本-----
import cv2
 
#调用笔记本内置摄像头,参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
#调用人脸分类器,要根据实际路径调整3
face_detector = cv2.CascadeClassifier(r'X:/Users/73950/Desktop/FaceRec/haarcascade_frontalface_default.xml')  #待更改
#为即将录入的脸标记一个id
face_id = input('\n User data input,Look at the camera and wait ...')
#sampleNum用来计数样本数目
count = 0
 
while True:    
    #从摄像头读取图片
    success,img = cap.read()    
    #转为灰度图片,减少程序符合,提高识别度
    if success is True: 
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
    else:   
        break
    #检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸
    #其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
    faces = face_detector.detectMultiSca
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值