
大模型
文章平均质量分 92
程序员小橙
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
计算机相关专业研究生如何找到大模型实习?
当前大模型领域的实习岗位呈现特征,不同岗位对研究生的知识结构要求差异显著。研究生在求职中的核心优势在于(如熟悉注意力机制数学原理)和(论文复现能力),但普遍存在(如分布式训练实战不足)。据 Hugging Face 2025 年开发者调查,78% 的实习生因缺乏工业级项目经验被拒。原创 2025-08-31 11:21:28 · 330 阅读 · 0 评论 -
大模型工程面试经典—如何进行多机多卡大模型微调
本期分享系统介绍了如何进行多机多卡大模型微调这一大模型面试几乎必问的关键问题,并扩展了3个热点问题。总的来说,多机多卡微调类的问题是最顶尖的工程方面问题,按文中模板回答一定是加分项!原创 2025-08-31 11:19:21 · 515 阅读 · 0 评论 -
RASA:LLM系统中实现智能体记忆的认知框架(含代码)
大语言模型(LLMs)和智能体不断进化,已不再局限于简单的响应和输出,而是在推理与行动能力上持续成熟。随着智能体架构的进步,记忆、回忆和知识应用的方式,在系统设计和可信度方面变得愈发关键且复杂。RASA(Role-Aligned Software Architecture,角色对齐软件架构)作为一个创新性的认知框架,为构建具备强大记忆能力、能够灵活适应各种场景的智能体提供了全新的思路和方法。原创 2025-08-31 11:06:07 · 712 阅读 · 0 评论 -
POML:Token 控制(Token Control)
可通过(默认"end""start""middle":默认"gpt-4o"o200k_base编码)示例:保留开头与结尾,截断中间并替换自定义标记。</p>渲染效果:说明:默认分词器基于的o200k_base编码(用于gpt-4o到o3模型)。可在中指定模型名以自定义计数行为。通过charLimittokenLimit设定软限制;借助priority定义保留顺序;使用调整截断标记、方向与计数模型。该能力适合需要满足输入边界或令牌预算的场景。原创 2025-08-30 13:13:25 · 454 阅读 · 0 评论 -
强化学习的“GPT-3 时刻”即将到来
GPT-3 证明了,仅仅通过扩大语言模型的规模,就能带来强大的、task-agnostic(译者注:模型不依赖特定任务的设计或微调,就能处理多种不同类型的任务。)、few-shot(译者注:模型仅需极少量示例,就能快速理解并执行新任务。)的性能,其表现通常优于经过精心微调的模型。在 GPT-3 出现之前,要达到最先进的性能,首先需要在大型通用文本语料库上对模型进行预训练,然后再针对特定任务进行微调。如今的强化学习同样困在类似 GPT-3 之前的范式里。原创 2025-08-30 13:07:44 · 344 阅读 · 0 评论 -
POML 与 OpenAI 集成
官方页面说明:POML 提供与 OpenAI Python SDK 的无缝集成(seamless integration),可将 POML 文件直接用于 OpenAI 的 Chat Completions API。生成 OpenAI 兼容参数:通过从 POML Prompt 文件生成可直接用于的参数。消息与模型参数:返回的参数字典包含messages、以及在 POML 中可选定义的model等。运行参数:使用<runtime>原创 2025-08-30 13:05:53 · 579 阅读 · 0 评论 -
LangChain框架下的检索增强:5步构建高效智能体系统
索增强智能体技术正在重塑AI应用的开发范式,它巧妙地将大语言模型的推理能力与结构化知识检索相结合,解决了传统智能体在处理动态信息时的局限性。今天我将根据实际开发中的痛点:如何设计高效、灵活的智能体系统?深入探讨三大集成模式(工具模式、预检索模式和混合模式)的实战选择,解析RAG(检索增强生成)组件链的构建细节,并分享高级技术如上下文压缩和混合检索的优化技巧。原创 2025-08-30 11:24:23 · 332 阅读 · 0 评论 -
智能体工作流(Agentic Workflow):AI应用开发的全面解析
智能体工作流是由一个或多个智能体动态执行的任务序列,强调自主规划、工具使用和反思迭代。与传统工作流的比较:确定性工作流(如费用审批规则)缺乏适应性;非智能体AI工作流(如文本摘要)仅静态生成输出;而智能体工作流整合LLM、工具和记忆,实现响应式演进。规划模式(Planning Pattern):智能体将复杂任务分解为子任务(任务分解),提高问题解决效率。例如,研究助理智能体分解主题研究为数据检索、分析和报告生成。该模式适用于高不确定性任务,但可能降低结果可预测性。原创 2025-08-30 11:13:03 · 783 阅读 · 0 评论 -
以正确方式构建AI Agents:Agentic AI的设计原则
接口至关重要——即便是对AI而言。许多agent系统出现故障的原因之一,就是组件间或组件与外部系统间的交互方式不清晰。要构建稳定的agent,你需明确定义它与工具、人类及其他系统的交互方式。在实际操作中,这意味着要清晰界定输入输出的格式,以及agent职责的边界。例如,若你的agent可调用外部工具(API、数据库等),则应像在代码中定义函数那样,定义每个工具的接口:它期望接收哪些输入?会返回哪些输出?然后要确保agent知晓这一约定。原创 2025-08-27 13:55:50 · 761 阅读 · 0 评论 -
30天快速入门AI大模型:从理论到实践的详细学习方案
大模型的时代已经到来。它不再是少数人的专利,而是每一个愿意学习、敢于实践的开发者的工具箱标配。遵循这份计划,30天后,你将不再是被动的信息接收者,而是能够。原创 2025-08-27 13:47:35 · 541 阅读 · 0 评论 -
提示工程已死?恰恰相反,这5个高阶玩法才是拉开差距的关键
赋予AI一个角色,例如“你是一位数学教授”或“你是一位世界级文案”,然后让它执行任务。原创 2025-08-27 13:35:37 · 605 阅读 · 0 评论 -
大模型工具/函数调用原理和实践
type:一个字符串,指定工具的类型,目前仅支持"function"。name:一个字符串,表示函数的名称。:一个字符串,描述函数的用途。parameters:一个,定义函数接受的参数。具体编写方法可参考相关文档。需要注意的字段包括:type:参数的数据类型(如stringinteger等)。:参数描述required:必填参数列表。enum:枚举值(用于限定参数的取值范围)。},"units": {},},定义函数的最佳实践编写清晰详细的函数名称、参数描述和说明。原创 2025-08-27 13:31:26 · 616 阅读 · 0 评论 -
在大模型应用中使用长短记忆: OpenMemory MCP
OpenMemory MCP 是一个面向 MCP 客户端的私有、本地优先的内存层,旨在为 AI 提供持久化的记忆能力。它提供了一套完整的基础设施,用于存储、管理和利用 AI 生成的记忆数据,并确保所有信息始终保留在本地系统中,不对外泄露。简而言之,它就像一个基于标准 MCP 协议构建的向量支持型存储层,专为 LLM 客户端设计,并且可以与 Mem0 等工具无缝集成、开箱即用。跨会话记忆存储支持任意文本块的长期保存与调用,使 AI 在每次交互中都能“记住”之前的内容,无需从零开始。原创 2025-08-27 13:00:09 · 757 阅读 · 0 评论 -
电商智能客服Agent开发实战:从零到一构建企业级AI助手
电商智能客服Agent是下一代AI应用的核心形态,它不仅能够回答用户问题,还能自主规划任务、调用工具并执行完整工作流程。本文将深入探讨AI Agent的基本概念、技术实现方式及电商场景中的应用,提供完整的开发流程和代码示例,帮助开发者从零开始构建一个功能强大的电商智能客服系统。通过模块化设计、多轮对话记忆管理和工具集成,这个Agent能够处理订单查询、商品推荐、退换货流程等复杂任务,同时具备企业级的安全性和稳定性保障。通过本文的介绍,读者已经掌握了构建电商智能客服Agent的核心技术与实现方法。原创 2025-08-26 13:51:36 · 595 阅读 · 0 评论 -
分不清RAG 、Function Call、MCP、Agent?一文秒懂它们的区别和联系
总结来说:Agent是一种AI应用,能感知环境、规划任务并调用服务(外部工具、数据库等,包括调用MCP Servers、Function Call)完成任务;如果Agent想要更好地完成任务,一般需要接入足够多的外部工具,而外部工具的接入千差万别;Function Call是大模型本身的一种能力,可以调用外部函数或API以增强大模型能力,但它同样面临着不同开发者自由定义导致的不标准问题;MCP则是给AI应用提供了一套标准化协议,方便AI应用更好地访问外部工具,以提升大模型的响应能力。原创 2025-08-26 13:11:43 · 917 阅读 · 0 评论 -
Java融合AI,手把手教你整合大语言模型
LLM 与 Java 的集成,为开发智能且用户友好的应用打开了无限可能。借助 Java 成熟的生态系统,结合 Grok、OpenAI、Gemini 等 LLM 的能力,可轻松构建具备扩展性的 AI 驱动解决方案。建议从简易的文本摘要器项目起步,积累实践经验后,再逐步探索更复杂的应用场景。AI大模型学习福利作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。原创 2025-08-26 11:23:56 · 948 阅读 · 0 评论 -
揭秘大语言模型的“开挂神器”:ReAct 框架与推理应用
ReAct 引导式学习框架和 ReACT 推理就像是大语言模型的翅膀,让它能够在知识的天空中自由翱翔。它们能让语言模型更加准确地理解我们的问题,生成更加精彩的回答。无论是在科技领域,还是在我们的实际生活中,ReAct 都有着广阔的应用前景。虽然目前 ReAct 还处于不断发展和完善的阶段,但是我相信,在不久的将来,它一定会给我们带来更多的惊喜。让我们一起期待 ReAct 创造出更加美好的未来吧!希望大家通过这篇文章,对 ReAct 引导式学习框架和 ReACT 推理有了更深入的了解。AI大模型学习福利。原创 2025-08-26 11:20:08 · 684 阅读 · 0 评论 -
探索大语言模型(LLM):定义、发展、构建与应用
可以自动提取文本或对话中的关键信息并生成简洁明了的摘要。这对于信息过载的时代尤为重要,能够帮助用户快速获取文本核心内容。原创 2025-08-25 14:55:16 · 569 阅读 · 0 评论 -
探索大语言模型(LLM):查漏补缺,你真的完全了解大语言模型的术语吗?
在人工智能领域,大语言模型(LLM)已成为技术革新与应用落地的核心驱动力。从参数规模到训练技术,从基础架构到前沿研究方向,理解这些术语是掌握LLM技术的关键。本文将系统解析大语言模型的核心术语,涵盖模型规模、训练方法、优化技术、部署实践及前沿研究方向,为从业者构建完整的知识结构。大语言模型的技术演进正从参数规模竞争转向效率优化与应用落地。理解这些术语不仅是技术入门的基石,更是把握行业趋势的关键。从基座模型到指令微调,从量化部署到多模态融合,LLM的未来将深度融入千行百业,重塑人机交互范式。原创 2025-08-25 14:50:44 · 941 阅读 · 0 评论 -
大模型面试题剖析:微调与 RAG 技术的选用逻辑
在大模型技术岗位面试里,“何时用微调技术,何时用 RAG 技术” 是高频考点。这不仅考察对两种技术的理解,更看能否结合场景权衡运用,下面结合要点深入分析。原创 2025-08-25 14:44:06 · 432 阅读 · 0 评论 -
大模型面试题剖析:模型微调和蒸馏核心技术拆解与考点梳理
在大模型求职面试的赛道上,模型微调和模型蒸馏是绕不开的核心技术考点。这两项技术,一个聚焦模型能力的精细打磨,一个着眼于知识迁移与效率优化,深刻影响着大模型在实际场景中的表现。下面,我们就从技术原理、面试考点等维度,深入拆解,助力大家在面试中精准应答。原创 2025-08-25 14:42:02 · 865 阅读 · 0 评论 -
大模型微调 Prompt Tuning与P-Tuning 的区别?
Prompt Tuning 和 P-Tuning 都属于 参数高效微调方法(PEFT, Parameter-Efficient Fine-Tuning),主要是为了避免对大模型全部参数进行训练,而是通过小规模参数(prompt embedding)来适配下游任务。但两者的实现方式和应用场景有一些区别:提示微调 仅在输入嵌入层中加入可训练的提示向量。在离散提示方法的基础上,提示微调首先在输入端插入一组连续嵌入数值的提示词元,这些提示词元可以以自由形式 或前 缀形式 来增强输入文本,用于解决特定的下游任务。在具原创 2025-08-25 14:26:12 · 960 阅读 · 0 评论 -
训练专有大模型的核心路径
10B-100B参数模型:推荐DP+TP组合,配合ZeRO-1阶段优化器分片。超100B参数模型:需启用3D并行(DP+PP+TP)和激活重计算(Activation Recomputation),如GPT-3训练中通过序列并行将激活内存减少5倍。通过上述架构设计,大模型可在有限资源下实现高效训练,同时为领域定制化优化提供基础。原创 2025-08-23 15:57:06 · 817 阅读 · 0 评论 -
从零搭建 RAG 知识库:3 步搞定,小白也能学会
今天就来手把手教大家:怎么从零开始搭一个属于自己的 RAG 系统?其实核心就 3 步,哪怕是 AI 初学者也能看懂,赶紧码住~原创 2025-08-23 14:55:25 · 630 阅读 · 0 评论 -
DeepSeek V3.1:低调发布,重磅发声
E.M. Forster所著的《看得见风景的房间》(A Room with A View)小说被用作以下提示的输入。这本书的长度超过6万字。可以在Gutenberg.找到这本书的内容。“用结构化的提纲总结要点。DeepSeek V3.1是那种能够改变对话的版本。其开源,参数规模庞大,并且不将用户拒之门外。用户可以现在就可以下载、运行并试用它。对于开发人员来说,这是一个突破长上下文摘要、推理链和代码生成限制的机会,而无需完全依赖于闭源API。。原创 2025-08-23 14:49:40 · 777 阅读 · 0 评论 -
LangChain框架入门: 手把手教你创建LLM工具
通过工具,LLM 这个“超级大脑”有了四肢,甚至可以配备各种各样的“武器”。这些“武器”就是提供给 LLM 的工具。有了工具,LLM 不再只是一个聊天助手,而是能够真正解决问题的助手。它可以根据用户的提问内容做出判断,决定需要调用哪些工具,并传递相应的参数。在LangChain中,创建工具的方式有多种,不同方式适用于不同场景:通过函数创建工具,适合实现简单功能;将Chain包装成工具,方便已有逻辑的复用;如果需求比较复杂,则可以通过继承BaseTool类的方式,实现更灵活的工具。原创 2025-08-22 16:20:38 · 602 阅读 · 0 评论 -
从AI调用到AI智能体:全面解析三种AI应用的技术架构
选择合适的AI应用模式是项目成功的关键。这三种模式并非相互排斥,而是一个演进的阶梯。一个复杂的应用系统,很可能同时包含这三种模式。例如,一个智能体可能会在其执行计划中,调用一个预定义的工作流,而这个工作流的某个节点又可能是一个简单的AI调用。项目启动时,应从最简单的模式开始(AI调用),快速验证业务价值。当业务流程复杂度增加时,再逐步引入工作流引擎,将原有的调用封装为流程节点。只有在面对真正开放、动态的问题时,才考虑投入资源研发智能体,这种演进式的路径可以有效控制风险和成本。原创 2025-08-22 16:05:58 · 655 阅读 · 0 评论 -
为什么MCP可以屏蔽LLM差异
MCP通过协议分层与客户端适配机制,实现了对各类LLM的兼容性支持。其核心设计包括工具描述标准化、客户端适配层、格式校验与参数解析、服务化执行接口以及动态协商能力。MCP的优势在于降低LLM集成门槛、避免重复开发工具调用逻辑、促进工具生态标准化。然而,MCP也面临依赖Prompt设计质量、需防范格式解析错误、工具安全性依赖服务器实现等挑战。AI大模型学习福利作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。原创 2025-08-22 15:59:45 · 952 阅读 · 0 评论 -
MCP+LLM+Agent:测试工程师如何构建下一代智能测试基座?
在AI技术飞速发展的今天,测试工程师正面临前所未有的机遇与挑战。传统测试工具已难以应对日益复杂的系统架构和海量测试数据,而MCP+LLM+Agent的黄金组合正在重新定义企业级测试基础设施。本文将带你深入探索这一技术架构,并手把手教你构建面向测试场景的智能解决方案。某电商平台采用该架构后,实现了:MCP(模型上下文协议)为测试工程师解决了关键问题:典型场景:python2. 安全测试特别方案 敏感数据脱敏:自动识别生产数据中的PII信息,生成符合GDPR的测试数据集 权限管控:基于RBAC模型原创 2025-08-22 15:06:31 · 694 阅读 · 0 评论 -
AI 智能体记忆机制详解
不妨关注一下专为智能体设计的 Mem0 等新兴架构,它们的目标是实现智能化的记忆管理 —— 能像人类一样自主判断信息价值,动态筛选需要保留的内容并优化存储方式。如今,AI 小伙伴能记住我们上周的对话,回想起我们的喜好,并从与我们长期的交流互动中学习。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。:这是智能体的长期知识库,相当于一本内置的百科全书,它储存着这个智能体通过长期经验积累的通用知识、行为模式和应对策略。原创 2025-08-22 14:50:33 · 700 阅读 · 0 评论 -
万字长文解析AI Agent技术原理和应用
Agent:“代理” 通常是指有意行动的表现。在哲学领域,Agent 可以是人、动物,甚至是具有自主性的概念或实体。AI Agent:AI Agent(人工智能代理)是一种能够感知环境、进行决策和执行动作的智能实体。RPA:RPA(Robotic Process Automation) 即机器人流程自动化,是一种软件自动化技术。RPA 通过模仿人类在电脑上的手动操作,如打开网站、点击鼠标、键盘输入等,实现业务流程的自动化。原创 2025-08-20 14:16:02 · 879 阅读 · 0 评论 -
AI大模型算法-从大模型原理剖析到训练(微调)落地实战
通过本文的原理剖析和实战案例,希望能为读者提供从理论到落地的清晰路径,让大模型真正服务于业务创新,而非停留在实验室的 “黑科技”。随着技术的进步,大模型将变得更易用、更高效,成为各行业的基础工具,推动人工智能进入普惠时代。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。以 GPT 模型为例,其解码器采用 “自回归” 机制,通过预测下一个词的概率生成连贯文本,这也是聊天机器人能持续对话的核心原理。原创 2025-08-20 14:06:28 · 531 阅读 · 0 评论 -
如何结合大模型优化文档解析能力
文档智能处理是企业数字化转型的核心点之一。但随着大语言模型技术的迅猛发展,如 DeepSeek 等模型在处理非结构化数据时,幻觉问题成为了阻碍企业有效利用数据资产的绊脚石。DeepSeek-R1 的幻觉率高,远超行业平均水平,这意味着在文档解析等非结构化数据处理场景中,模型可能会生成与事实不符或脱离上下文的内容,给企业决策带来潜在风险。因此,如何在利用DeepSeek强大自然语言处理能力的同时,有效避免其幻觉问题,成为了企业在文档解析领域亟待解决的课题。本文将深入探讨“如何结合大模型优化文档理解能力”。原创 2025-08-20 14:02:42 · 983 阅读 · 0 评论 -
从零开始,亲手开发你的第一个AI大模型(一)基础知识
ADK 是 Google 开源的 Python 工具包,用于开发、评估与部署智能 AI 代理系统。它支持从简单的单代理任务,到复杂的多代理编排工作流,具有模块化、可扩展的架构设计。它致力于让开发者快速构建、组合和部署智能 AI Agent 应用。像拼乐高一样组合 Agent;像注册插件一样集成工具;像写脚本一样定义业务逻辑;并支持多种运行模式(如交互式调用、多轮对话、异步执行等)。ADK 本身并不提供大模型,它是一个 Agent 编排与运行系统。原创 2025-08-20 13:55:55 · 928 阅读 · 0 评论 -
LLM大语言模型入门
定义:基于海量数据训练的深度学习模型,可处理文本/音频/视频等多模态输入并生成输出。大语言模型(LLM)就是个「吃书长大的话痨学霸」🤓📚💬它像一只吞了全世界图书馆的电子鹦鹉🦜,你问它啥,它都能从肚子里(其实是神经网络)掏出一串像模像样的回答,甚至能写诗、编代码、装莎士比亚…但小心!它偶尔会一本正经地胡说八道😅(比如告诉你“番茄是蓝色的” —— 因为它只“读书”没亲手摸过番茄)。核心特征:训练数据大和参数量大训练数据规模巨大(TB级语料)参数量级庞大(百亿至万亿级)原创 2025-08-20 13:48:37 · 970 阅读 · 0 评论 -
大模型幻觉
在语言模型的背景下,幻觉指的是一本正经的胡说八道:看似流畅自然的表述,实则不符合事实或者是错误的。二、为什么LLM会产生幻觉?源与目标的差异:当我们在存在源与目标差异的数据上训练模型时,模型产生的文本可能与原始源内容产生偏差。这种差异,有时可能是在数据收集过程中不经意间产生的,有时则是故意为之。无意识的源目标差异:这种差异的产生有多种原因。例如,数据可能是基于某种经验法则编制的,使得目标信息并不总是完全依赖源信息。原创 2025-08-19 14:22:00 · 800 阅读 · 0 评论 -
传统算法如何转型大模型?
传统算法向大模型转型不是替代而是。原创 2025-08-19 14:14:12 · 549 阅读 · 0 评论 -
2025最新大模型八股文,7天背完通过率+90%—超全大模型常见面试题(附答案)
自ChatGPT开启大模型时代以来,大模型正迎来飞速发展,现在从事大模型开发相关工作可谓是处在时代的风口。那么大模型面试需要哪些技能和技巧呢,本文详细整理了全套的面试问题及答案,希望对大家有所帮助!大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。Transformer的常见面试题涵盖了模型的结构、原理、应用以及优化等多个方面。原创 2025-08-19 14:06:39 · 549 阅读 · 0 评论 -
2025年AI大模型风口:哪款大模型适合你?一图看懂!
AI大模型不仅是技术革命,更是企业增长的“核动力”。无论是GPT-4o的多模态能力、DeepSeek-R1的超高性价比,还是Kimi打造真正的 Agent,2025年的AI风口为企业提供了无限可能。原创 2025-08-19 13:51:05 · 467 阅读 · 0 评论 -
RAG究竟是什么?一文搞懂大模型的记忆增强术
想象一下,你是个健忘的程序员(相信我,这不需要太多想象力)。有一天,产品经理问你:"咱们去年做的那个xxx系统,用的什么算法来着?你一脸懵逼,挠挠头说:"这...我想想啊...好像是...呃..."这时候你会怎么办?当然是翻文档、查Git提交记录、问问当时参与的同事,对吧?RAG就是让大模型学会了这个技能 ——不知道的时候,先去翻翻资料,再来回答问题。RAG确实是个好东西,它让大模型从"只会背书的学生"变成了"会查资料的研究生"。在很多实际应用场景中,RAG的效果往往比单纯的大模型要好得多。原创 2025-08-19 13:41:55 · 696 阅读 · 0 评论