导入模块
import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics
加载数据并处理数据
def preprocess(x,y):
x = tf.cast(x,dtype=tf.float32)/255.
y = tf.cast(y,dtype=tf.int32)
return x,y
(x,y),(x_test,y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y,axis=1)
y_test = tf.squeeze(y_test,axis=1)
db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(10000).batch(200)
db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
db_test = db_test.map(preprocess).shuffle(10000).batch(200)
sample = next(iter(db))
print(sample[0].shape,sample[1].shape)
创建网络和优化器
#[b,32,32,3] => [b,16,16,64] => [b,8,8,128] => [b,4,4,256] => [b,2,2,512] => [b,1,1,512]
conv_net = Sequential([
#unit1
layers.Conv2D(64,kernel_size=3,padding='same',activation=tf.nn.relu),
layers.Conv2D(64,kernel_size=3,padding='same',activation='relu'),
layers.MaxPool2D(pool_size=2,padding='same',strides=2),
#unit2
layers.Conv2D(128,kernel_size=3,padding='same',activation=tf.nn.relu),
layers.Conv2D(128,kernel_size=3,padding='same',activation='relu'),
layers.MaxPool2D(pool_size=2,padding='same',strides=2),
#unit3
layers.Conv2D(256,kernel_size=3,padding='same',activation=tf.nn.relu),
layers.Conv2D(256,kernel_size=3,padding='same',activation='relu'),
layers.MaxPool2D(pool_size=2,padding='same',strides=2),
#unit4
layers.Conv2D(512,kernel_size=3,padding='same',activation=tf.nn.relu),
layers.Conv2D(512,kernel_size=3,padding='same',activation='relu'),
layers.MaxPool2D(pool_size=2,padding='same',strides=2),
#unit5
layers.Conv2D(512,kernel_size=3,padding='same',activation=tf.nn.relu),
layers.Conv2D(512,kernel_size=3,padding='same',activation='relu'),
layers.MaxPool2D(pool_size=2,padding='same',strides=2)
])
#[b,512] => [b,256] => [b,128] => [b,100]
fc_net = Sequential([
layers.Dense(256,activation='relu'),
layers.Dense(128,activation='relu'),
layers.Dense(100)
])
conv_net.build(input_shape=[None,32,32,3])
fc_net.build(input_shape=[None,512])
variables = conv_net.trainable_variables + fc_net.trainable_variables
optimizer = optimizers.Adam(learning_rate=0.0001)
数据更新
for epoch in range(10):
for step,(x,y) in enumerate(db):
#img=x[0]
#img = tf.reshape(img,[1,32,32,3])
#plt.subplot(231),plt.imshow(x[0],'gray')
#plt.show()
#[b,32,32,3] => [b,1,1,512]
with tf.GradientTape() as tape:
out = conv_net(x)
#[b,1,1,512] => [b,512]
out = tf.reshape(out,[-1,512])
#[b,512] => [b,100]
logits = fc_net(out)
#[b] => [b,100]
y_onehot = tf.one_hot(y,depth=100)
loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True))
grads = tape.gradient(loss,conv_net.trainable_variables)
optimizer.apply_gradients(zip(grads,variables))
if step%100==0:
print(epoch,step,'loss:',float(loss))
测试
total_correct = 0
total_num = 0
for x,y in db_test:
out = conv_net(x)
out = tf.reshape(out,[-1,512])
logits = fc_net(out)
prod = tf.nn.softmax(logits,axis=1)#将值转为[0~1]且和为1
pred = tf.argmax(prod,axis=1)
pred = tf.cast(pred,dtype=tf.int32)
correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_correct += correct
total_num += x.shape[0]
acc = total_correct/total_num*100
print('准确率',int(acc),'%',sep='')