AcWing 4787. 构造序列

本文介绍了一道关于构造特定价值的正整数序列的问题,并提供了解题思路与C++实现代码。通过对序列价值定义的理解,文章详细阐述了如何构造符合条件的序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4787. 构造序列

原题

对于一个长度为 n 的正整数序列 a1,a2,…,an,我们这样规定该序列的价值:

  • 如果 n 为偶数,则序列价值为 gcd(a_{1},a_{2})+gcd(a_{3},a_{4})+…+gcd(a_{n-1},a_{n})。
  • 如果 n 为奇数,则序列价值为 gcd(a_{1},a_{2})+gcd(a_{3},a_{4})+…+gcd(a_{n-2},a_{n-1})。

请你构造一个长度为 nn 的正整数序列 a1,a2,…,an,要求:

  1. ai 两两不同。
  2. 1 ≤ ai ≤ 10^{9}
  3. 序列价值恰好为 m。

输入格式

共一行,两个整数 n,m。

输出格式

共一行,如果序列不存在,则输出 -1,否则输出 a1,a2,…,an。

如果答案不唯一,输出任意合理答案均可。

数据范围

前 7 个测试点满足 1 ≤ n ≤ 10。
所有测试点满足 1 ≤ n ≤ 10^{5},0 ≤ m ≤ 10^{8}

输入样例1:

5 2

输出样例1:

1 2 3 4 5

输入样例2:

5 3

输出样例2:

2 4 3 7 1

输入样例3:

7 2

输出样例3:

-1

题意解读:

我们构造一个序列需要满足

        如果 n 为偶数 gcd(a_{1},a_{2})+gcd(a_{3},a_{4})+…+gcd(a_{n-1},a_{n})  相加和为 m

        如果 n 为奇数  gcd(a_{1},a_{2})+gcd(a_{3},a_{4})+…+gcd(a_{n-2},a_{n-1})  相加和为 m

解题思路:

分析上述式子 序列价值求和的个数为 (n / 2) 个,所以 m 需要满足 m >= (n / 2)

我们不妨设 a_{1} = d,那么 gcd(a_{1}a_{2} ) = d,后序数列 gcd(a_{n-1},a_{n}) 或者  gcd(a_{n-2},a_{n-1}) 只需等于 1 即可

那么 d = m - (n / 2 - 1)  解释

(n / 2) 代表一共有几个gcd相加,

减去 1 表示 gcd(a_{1},a_{2}) 腾出位置,

m - (n / 2 - 1) 给 gcd(a_{1},a_{2})赋一个值,使后面序列的gcd为 1

代码实现:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int main()
{
    int n,m;
    cin >> n >> m;
    if(n == 1)   // n = 1的时候需要特判 只有 m = 0 的时候才符合
    {
        if(m == 0) puts("1");  // m = 0时,输出任意数都可
        else puts("-1");   // 不符合,抛出 -1
    }
    else if(m < n / 2) puts("-1");
    else
    {
        int d = m - (n / 2 - 1);
        printf("%d %d ",d,2*d);  // 先输出 a1, a2
        for(int i = 1;i < n - 1;i++) printf("%d ",2 * d + i); //后面的数满足gcd = 1
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理论!都是理论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值