你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1] 输出:4 解释:偷窃1号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4。
示例 2:
输入:[2,7,9,3,1] 输出:12 解释:偷窃1号房屋 (金额 = 2), 偷窃3号房屋 (金额=9),接着偷窃5号房屋 (金额=1)。偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:1 <= nums.length <= 10
思路:围绕动态规划几个要点进行相关说明。一个是确定动态数组含义,这里dp[i] 表示考虑前i所房子能偷窃到的最大金额;一个是确定动态数组大小,这里直接设置为和nums等大;一个是初始化动态数组,这里初始化dp[0]=nums[0];一个是确定递推公式,这里递归公式思路为:第i所房子可以偷(nums[i]+dp[i-2])或者不偷(dp[i-1])
public int rob(int[] nums) {
int[] dp=new int[nums.length];
dp[0]=nums[0];
for(int i=1;i<nums.length;i++){
if(i==1)
dp[i]=Math.max(dp[0],nums[1]);
else
//递归公式:第i所房子可以偷(nums[i]+dp[i-2])或者不偷(dp[i-1])
dp[i]=Math.max(nums[i]+dp[i-2],dp[i-1]);
}
return dp[nums.length-1];
}