算法训练营day28 贪心算法②122.买卖股票的最佳时机II、55. 跳跃游戏、 45.跳跃游戏II 、1005.K次取反后最大化的数组和

        贪心算法第二篇博客!感觉这篇博客中的算法都很巧妙,需要动动脑筋

122.买卖股票的最佳时机II

        (这道题可以遍历数组,如果不能遍历的话,就不能做了,需要注意的是:

  • 只有一只股票!
  • 当前只有买股票或者卖股票的操作

        所以想获得利润至少要两天为一个交易单元。

        如果想到其实最终利润是可以分解的,那么本题就很容易了!——如何分解呢?

  • 假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
  • 相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
  • 此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
  • 那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。

        可以发现,其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。那么只收集正利润就是贪心所贪的地方!

        局部最优:收集每天的正利润,全局最优:求得最大利润

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        result = 0
        for i in range(1, len(prices)):# 左闭右开
            result += max(prices[i] - prices[i - 1], 0)# 取大于0的利润累加进结果中
        return result

55. 跳跃游戏

        我想的方法:判断0的个数及0之前的可走长度,如果能跨过则可以通过(太麻烦了)

        贪心算法:局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

注释:引用自《代码随想录》

  • i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
  • 而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
  • 如果 cover 大于等于了终点下标,直接 return true 就可以了。

        不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        cover = 0
        if len(nums) == 1:
            return True
        i = 0
        while i <= cover:
            cover = max(i + nums[i], cover)
            if cover >= len(nums) - 1:
                return True
            i += 1
        return False

45.跳跃游戏II 

        这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

        核心就是这一步的最远距离没到终点,才需要加1,继续下一步的最远距离……(不断重复),同时以这一步的最远距离是否到达终点为判断条件,来进行加1

        如何划分“步”的区间,下一步的区间由上一步区间每个元素统计出的最远距离而定,区间起点紧邻上一步

class Solution:
    def jump(self, nums: List[int]) -> int:
        if len(nums) == 1:
            return 0
        cur_distance = 0 # 当前最远距离
        ans = 0 # 记录步数
        next_distance = 0 # 下一步覆盖最远距离下标
        for i in range(len(nums)):
            next_distance = max(nums[i] + i, next_distance)
            if i == cur_distance:
                ans += 1 # 需要走下一步
                cur_distance = next_distance # 规定区间
                if next_distance >= len(nums) - 1:
                    break
        return ans

1005.K次取反后最大化的数组和

        第一眼的想法是:排序,统计负数个数

  • 如果负数个数l 大于等于k,那么将最小的k个数取反
  • 如果负数个数l 小于k,将所有负数取反,同时最小的负数重复取反

bingo!

        贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。

        如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。

        那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。

class Solution:
    def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:
        nums.sort(key = lambda x: abs(x), reverse = True)
        # key是排序函数 如 sorted()、list.sort()的参数, 用于指定每个元素在排序前的转换规则
        # lambda x: abs(x) 是一个匿名函数, 它接受参数 x 并返回其绝对值 abs(x)
        # 作用:排序时将根据元素的绝对值大小进行比较,而非元素本身。
        # 指定排序结果为降序。若省略该参数,默认升序。
        # lambda 函数: add = lambda a, b: a + b
        for i in range(len(nums)):
            if nums[i] < 0 and k > 0:
                nums[i] *= -1
                k -= 1
        if k % 2 == 1:
            nums[-1] *= -1
        result = sum(nums)
        return result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值