FFmpeg 之I、B、P帧的基本编码原理,我们用最详细的方式解析Android消息机制的源码

本文详细解析了FFmpeg中I、B、P帧的编码原理,包括DCT、量化、RLE行程编码、霍夫曼编码等步骤。同时介绍了P帧基于I帧的预测图像编码,涉及宏块的移动矢量计算和搜索算法。最后提到了B帧的双向预测图像编码。此外,文章还提及了Android消息机制的相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

那什么是高频和低频呢?这里的高频数据是指,图像颜色的变化比较强烈的地方,比如人像画的轮廓与背景的交叉处,在这里的色值变化很快,所以称为高频。相对的低频就是指,颜色变化比较缓和的地方。所以DCT的作用并不是对数据进行压缩,而是为了方便后面的操作,比如量化、RLE行程编码、以及霍夫曼编码。

下一步就是量化,因为人眼对高频区域其实并不敏感,所以利用这一点,可以将高频部分数据进行压缩。这样一来,图块的数据就会呈现两部分,一部分是变化平滑的低频数据,另一部分是刚压缩过的高频部分,数值也变得差不多。而后再经过Zig-zig编排,数据就会呈现出连续几个值相同的的形式,比如23334551550000。这样一来,再经过RLE行程编码,就可以去掉连续值相同的冗余数据。

因为RLE在编码时,对相同的数值只编码一次,同时计算相同数值重复的次数,因此称为行程编码。而与RLE处于同级的DPCM,则主要是对图块与图块之间的差值进行编码。这样一来可以再次压缩数据,之后再通过霍夫曼编码或者算术编码,编码操作也就完成了。同样霍夫曼编码和算术编码,也可以单独写一篇文章出来。

2、P帧的基本编码原理

===========

P帧也就是预测图像P,与I帧不同的是,它不仅要从空间上去除冗余数据,还要从时间冗余方面上着手,因为它是以在它之前出现的I帧作为参考对象来编码的。与I帧不同的是,预测图像P的编码是以16x16像素的宏块为基本编码单元的。对于P帧,为了表示它与前面I帧的关系,我们会一直用预测图像和参考图像这两个词。

其实很好想象,因为对预测图像编码,就是对它和参考图像直接的差值进行编码。所以我们只需要做到以下两点即可:

  • 1、算出当前要编码的图像宏块,与参考图像宏块之间的差值

  • 2、计算出宏块的移动矢量

比如下图:

19956127-e49542061efa8ea5

这张图应该

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值