单调栈概念和建立

本文介绍了单调栈的概念及其在算法竞赛中的应用场景。通过构建单调递增或递减的栈,可以高效地解决某些特定问题,如求解最大矩形面积等。文章详细解释了如何维护单调栈,并给出了具体的操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单调栈是说栈里面的元素从栈底到栈顶单调递增或者单调递减的(类似于汉诺塔)对栈进行了约束,单调递增或单调减的栈,跟单调队列差不多,但是只用到它的一端,利用它可以用来解决一些ACM/ICPC和OI的题目,如RQNOJ 的诺诺的队列等。

  1. 建立「单调递减栈」,并对原数组遍历一次:

    1. 如果栈为空,则把当前元素放入栈内

    2. 如果栈不为空,则需要判断当前元素和栈顶元素的大小:

      1. 如果当前元素比栈顶元素大:则逐个弹出栈顶元素,直到当前元素比栈顶元素小为止

      2. 如果当前元素比栈顶元素小:则把当前元素入栈

  2. 建立「单调递增栈」,并对原数组遍历一次:
    1. 如果栈为空,则把当前元素放入栈内

    2. 如果栈不为空,则需要判断当前元素和栈顶元素的大小:

      1. 如果当前元素比栈顶元素小:则逐个弹出栈顶元素,直到当前元素比栈顶元素大为止

      2. 如果当前元素比栈顶元素大:则把当前元素入栈

注意: 在使用单调栈的场景下,都能用暴力法解决。暴力解法具有较高的时间复杂度,而利用单调栈能减低时间复杂度


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值