AI发展中的就业机遇:这一职业爆火,如何抓住?非常详细收藏这一篇就够!

人工智能的快速发展,带动相关领域人才需求大幅增长。招聘平台数据显示,今年2月份,算法工程师、机器学习、深度学习等岗位招聘量同比大幅增加,其中数据标注岗位招聘需求同比增长超50%。

目前,人工智能训练师主要从事标注类工作。随着市场需求激增,这个职业吸引了很多跨界求职者涌入,也带火了相关的职业培训。 

在深圳的一家AI训练师的培训机构,前来上课的学员来自各行各业。 据培训机构的负责人介绍,目前人工智能训练师主要从事标注类工作,可以细分为文本标注、图像标注、语音标注等类型,薪资在每月6000元到19000元不等。这两年,他们的培训业务已经从北京,拓展到了深圳、杭州和成都,但这还远远不能满足市场的需求,毕业的学员往往刚一上传简历,就被企业一抢而光。 

某人工智能训练师培训机构校长刘美芳告诉记者:比如9点开放简历,我们同学一个小时之内可以接收到10多个回复,很多HR(人力资源部门)主动向他们打招呼,都不需要去投递。

某招聘平台数据显示,今年春节后至今,数据标注类岗位招聘职位数量同比增长达56%。业内人士表示,随着大语言模型的快速发展,以及涉及的领域越来越多,人工智能训练师的需求还会继续增加。 

人工智能训练师:

数字时代的“教练”

人工智能训练师到底是如何工作的?服务于专业领域的大模型发展,对训练师提出了哪些要求呢? 在深圳南山的一家专门研发客服类大模型的科技公司内,人工智能训练师黄培慧正在和他的同事,对大模型展示的效果进行演练。 

黄培慧表示,大模型之所以能够准确回答顾客的提问,是因为前期已经给大模型输入了1000多条相似的问句。对他们来说,筛选顾客向客服人员提问的过程,就是做“标注”,而这些“问句”,就是“数据”,也叫“语料”。 

除了这类面向公众服务的大模型,越来越多服务于专业领域的人工智能大模型发展也十分迅速。在广州市中山大学附属第六医院,病理科主任黄艳正在指导一家医疗类大模型的研发人员,对数字病理切片进行标注,为病理大模型提供训练数据。 

作为专业度极高的垂类模型,医疗类大模型对数据的标注要求非常严格,为了确保数据的安全和准确,这类大模型的训练必须由医生等专业人士进行把关。 

某医疗大模型研发科技公司副总裁孙其功表示,此类工作一般都需要高年资的医学类专家来指点,或者是亲自上手来进行数据的标注,标错了有可能会产生误诊或漏诊的情况。

此外,为了减少“AI幻觉”,也就是大模型生成的内容与真实数据不符、偏离用户指令的现象发生,各垂类大模型都在构建由相关领域专家参与的多层次标注验证机制,将他们的知识和经验转化为关键训练参数,以提高大模型的准确性。

市场急缺哪方面AI人才?

高薪之下,越来越多求职者希望投身人工智能行业。智联招聘数据显示,2月份,AI领域求职人数同比增幅达200%以上。

当前企业最青睐哪类AI人才?

猎聘近日发布的《2025AI技术人才供需洞察报告》显示,去年2月至今年1月间,在猎聘平台上招聘的AI职位中,约47%要求硕博学历。

由于人工智能自2019年才被正式纳入本科专业目录,目前AI领域多数从业者来自其他相关专业。从猎聘数据看,人数最多的前四个专业分别是计算机科学与技术、软件工程、电子信息以及机械工程。

“企业主要看是否具备相关专业能力。”猎聘大数据研究院相关负责人介绍,算法是人工智能的核心,涉及复杂的数学、统计学、计算机科学等领域的知识;深度学习则涉及复杂的神经网络模型和算法优化,从业者在掌握线性代数、概率论、统计学等知识的同时,还需具备编程技能。

多家平台数据显示,今年以来,AI人才持续保持供不应求的态势。未来随着AI技术加快应用,还需要哪些人才?

除了当前市场紧缺的算法工程师、大模型工程师、机器学习工程师等,从全产业链看,AI领域在基础层、技术层、应用层都存在人才缺口。比如高性能计算工程师、芯片架构师等,也是企业竞相争夺的对象。

中国科学院自动化研究所研究员王亮表示,由于人工智能涉及多领域,所需人才也覆盖多种类型——既有致力于前沿算法与核心理论创新的基础研究型人才,也有将理论与算法模型开发相结合、形成可落地产品的技术开发型人才,还包括既懂人工智能技术又懂所在行业业务的应用复合型人才。此外,AI训练师、数据标注工程师、AI伦理与安全专家等数据治理和支撑人才也变得越来越重要。

“目前最急需的还是基础研究型人才和应用复合型人才,一方面解决高端AI芯片国产化率不足和算法原创性不足问题,另一方面推动AI加速赋能各领域各行业。”王亮认为。

据麦肯锡报告预测,到2030年,中国对AI专业人才的需求预计将达600万人,而人才缺口可能高达400万人。

如何捕捉AI发展中的就业机遇?

面对AI带来的新岗位需求,普通人如何适应产业变化,提高就业的稳定性和竞争力?

教育,无疑是其中关键一环。新一轮科技浪潮下,中国高校也迎来史上最大规模专业调整。短短几年间,已有超500所高校开设人工智能专业或成立专门学院,考生的报考热度持续升高。2025年清华大学、中国人民大学等高校招生计划里均包含人工智能专业。

“人才数量提升的同时,优化培养结构、提升质量显得更为关键。”王亮认为,未来不同层次和领域的AI人才需求会更加细分,高校在专业设置和课程设计上应更加注重人才的差异化培养。

2024年,南开大学全面启动“人工智能赋能人才培养行动计划”,打造了130余门人工智能系列课程群。

“人工智能需要多学科交叉融合发展,这就要求高校超前布局、主动调整,在加强基础学科、新兴学科、交叉学科建设中,形成学科集群,为推动人工智能人才培养提供坚实基础。”南开大学校长陈雨露说。

为培养更多实用型、复合型和紧缺型人工智能应用人才,教育部近日印发通知,部署各地各高校面向企事业单位和行业协会征集一批“人工智能应用”领域供需对接就业育人项目。

“行业从业者也需要保持持续学习的习惯。”王亮表示,从人工智能相关专业毕业生的反馈来看,职业发展过程中,除了技术能力外,设计思维、跨学科协作、自主学习能力的培养同样至关重要。

在科大讯飞董事长刘庆峰看来,AI技能应成为未来公民必备能力,需加强AI新职业的规划与管理及相关技能培训,尤其要为低收入和就业困难群体提供免费培训机会。

“年轻人无论从事哪个专业,都可以每周花点时间,关注全球AI技术在各行各业的发展,这是未来最大的机会源泉。”宇树科技创始人王兴兴说。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值