Recommendation Unlearning 论文笔记

本文介绍了一个名为RecEraser的框架,用于解决推荐任务中的机器unlearning问题。框架包括数据划分(UBP,IBP,InBP)、子模型训练和基于注意力的自适应聚合。实验结果显示,RecEraser在推荐性能和unlearning效率上优于其他方法,尤其在InBP划分下表现最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

本文贡献

对于 Recommendation Unlearning,目标一般是以下三个

RecEraser框架介绍

1.数据划分

(1)UBP

(2)IBP

(3)InBP

2. 子模型训练

3. 基于注意力的自适应聚合

实验部分

数据集

用于训练子模型的推荐模型:

用于测试unlearning的其他方法

Movielens-10m的实验结果如下(RecEraser使用InBP划分)

推荐性能:

unlearning性能:

消融研究

1.数据划分方法(以Movielens-1m为例)

2.聚合方法

划分的子模型数量影响

本文贡献

  1. 第一个解决推荐任务中机器unlearning的工作。提出了一个通用框架RecEraser
  2. 设计了三种数据划分策略,并提出了一种基于注意力的自适应聚合方法来进一步提高RecEraser的性能
  3. 在三个数据集和三个有代表性的推荐模型上进行了的实验。结果表明,RecEraser不仅可以实现有效的学习,而且在推荐性能方面优于最先进的学习框架。

对于 Recommendation Unlearning,目标一般是以下三个

  1. unlearning的数据必须是真正的被废除,并且不影响模型参数
  2. unlearning的过程需要尽量快
  3. unlearning后的模型要和从头训练的模型性能相当

RecEraser框架介绍

RecEraser有三个核心部分

数据划分->子模型训练->基于注意力的自适应聚合

当需要unlearning时,只需要重新训练某个子模型

1.数据划分

本文提出三种方法

即基于用户的划分(UBP),基于物品的划分(IBP)和基于u-i交互的划分(InBP(基于U/I/In的相似性)

(1)UBP

UBP数据划分前的准备工作:

预训练user embeddings\overline{\mathbf{P}}=\{\overline{\mathbf{p}}_1,\overline{\mathbf{p}}_2,\cdots,\overline{\mathbf{p}}_m\}     (使用WMF生成)

user-item交互矩阵\mathbf{Y}

划分后集合总数K

划分后每个集合最大容量t

步骤:

1.从所有Users中随机选择K个users\mathbf{A}=\{a_1,a_2,\cdots,a_K\}

2.对于\mathbf{A}中每一个用户a_i,计算他与所有其他用户u的欧几里得距离,公式如下

dist(a_i,u) =\left \| \overline{\mathbf{p}}_{a_i}-\overline{​{\mathbf{p}}}_{u}\right \|_2=\sqrt{\sum^n_{j=1}(\overline{p}_{​{a_i},j}-\overline{p}_{​{u},j})^2}

然后按升序排列 得到E_s

3.根据E_s,将Y_u按距离从小到大的顺序装入S_i分片,每个分片里元素数量不能超过t

4.根据公式重新计算各个集合S_ia_i,回到第(2)步,直到达到循环上限或a_i不再变化

a_i=\frac{\sum_{j\in S_i}\overline{p}_j}{|S_i|}

(2)IBP

IBP的步骤和UBP类似,在此不赘述

(3)InBP

InBP数据划分前的准备工作:

预训练user embeddings  \overline{\mathbf{P}}=\{\overline{\mathbf{p}}_1,\overline{\mathbf{p}}_2,\cdots,\overline{\mathbf{p}}_m\}    (使用WMF生成)

预训练item embeddings \overline{\mathbf{Q}}=\{\overline{\mathbf{q}}_1,\overline{\mathbf{q}}_2,\cdots,\overline{\mathbf{q}}_n\}          (使用WMF生成)

user-item交互矩阵\mathbf{Y}

划分后集合总数K

划分后每个集合最大容量t

步骤:

1.从所有交互矩阵\mathbf{Y}中随机选择K个u-i交互a_i\mathbf{A}=\{a_1,a_2,\cdots,a_K\}

2.对于\mathbf{A}中每一个交互a_i,计算他与所有其他交互y_{uv}的欧几里得距离,公式如下:

dist(a_i,y_{uv})=\left \| \overline{\mathbf{p}}_i -\overline{\mathbf{p}}_u\right \|_2\times \left \| \overline{\mathbf{q}}_i -\overline{\mathbf{q}}_v\right \|_2\\=\sqrt{\sum^n_{j=1}(\overline{p}_{i,j}-\overline{p}_{u,j})^2}\times \sqrt{\sum^n_{j=1}(\overline{q}_{i,j}-\overline{q}_{v,j})^2}

然后按升序排列 得到E_s

3.根据E_s,将y_{uv}按距离从小到大的顺序装入S_i分片,每个分片里元素数量不能超过t

4.根据公式重新计算各个集合S_ia_i,回到第(2)步,直到达到循环上限或a_i不再变化

a_i=(\frac{\sum_{j\in S_i}\overline{p}_j}{|S_i|},\frac{\sum_{j\in S_i}\overline{q}_j}{|S_i|})

2. 子模型训练

本文中的RecEraser只是一个框架,中间的子模型训练方法自定义,本文使用三个推荐模型BPR,WMF,LightGCN

3. 基于注意力的自适应聚合

不同的子模型应该对不同的u-i的预测有不同的贡献, 例如,如果分片S_i比分片S_j包含更多的用户u的交互,则在预测u的偏好时,M_i的权重大于M_j的权重。

首先考虑到不同子模型学习到的embedding \mathbf{P }\mathbf{Q}在不同的空间,首先将它们转移到同一个表示空间中:

\mathbf{P}^i_{tr} =\mathbf{W}^i\mathbf{P}^i+\mathbf{b}^i

\mathbf{Q}^i_{tr} =\mathbf{W}^i\mathbf{Q}^i+\mathbf{b}^i

然后聚合embedding

 \mathbf{P}=\sum {^K_{i=1}\alpha _i \mathbf{P}^i_{tr}}

\mathbf{Q}=\sum {^K_{i=1}\beta _i \mathbf{Q}^i_{tr}}

\alpha ^*_i=h^\top_1\sigma (\mathbf{W}_1\mathbf{p}^i_{tr}+\mathbf{b}_1);\alpha _i=\frac{\textup{exp}(\alpha^*_i )}{\sum^K_{j=1}\textup{exp}(\alpha^*_j )}

\beta ^*_i=h^\top_2\sigma (\mathbf{W}_2\mathbf{p}^i_{tr}+\mathbf{b}_2);\beta _i=\frac{\textup{exp}(\beta^*_i )}{\sum^K_{j=1}\textup{exp}(\beta^*_j )}

也就是说在这一层用深度学习的方法,用P、Q去和交互矩阵Y对比,然后计算loss优化权重参数

\underset{\Theta }{min}\mathcal{L}(\mathbf{P},\mathbf{Q},\mathbf{Y})+\lambda \left \| \Theta \right \|^2_2

实验部分

数据集

先预处理数据集将详细评级转换为指示用户是否与项目交互的01

用于训练子模型的推荐模型:

BPR

WMF

LightGCN

对于每个子模型M_i,评分函数被定义为\hat{y}_{uv}={\mathbf{p}^i_u}^\top \mathbf{q}^i_v

用于测试unlearning的其他方法

Retrain:重新训练

SISA: 将训练数据随机分割成碎片,然后通过平均值聚合所有子模型的结果以进行最终预测。

GraphEraser:针对图数据量身定制的最先进的方法,它使用节点聚类方法进行图分区,并使用静态加权聚合方法进行预测。

Movielens-10m的实验结果如下(RecEraser使用InBP划分)

推荐性能:

无论用哪种推荐模型RecEraser的推荐性能均优于另外两种unlearning方法且劣于重新训练的模型,在另外两个数据集上也是一样的结果

unlearning性能:

RecEraser与重新训练相比,节省大量时间

消融研究

1.数据划分方法(以Movielens-1m为例)

三种数据划分方法都比随机划分性能优越,其中InBP最好

2.聚合方法

本文提出的Attention-based Adaptive Aggregation(AttAgg)比另外两种性能优越

划分的子模型数量影响

子模型数量增加,unlearning所需时间减少,但是性能下降,因为子模型数量太多会打散数据中相关联的信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值