PySpark数据分析基础:pyspark.sql.SparkSession类方法详解及操作+代码展示

本文详细介绍了PySpark中的SparkSession类及其常用方法,包括parallelize、createDataFrame、getActiveSession、newSession、range、sql和table等。SparkSession是DataFrame和Dataset API的入口点,可用于创建DataFrame、执行SQL、缓存表等。文章通过代码示例展示了如何使用这些方法,帮助读者理解PySpark SQL的核心功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、pyspark.sql.SparkSession

二、函数方法

1.parallelize

2.createDataFrame

基础语法

功能

参数说明

返回

data参数代码运用:

schema参数代码运用:

3.getActiveSession

基础语法:

功能:

代码示例

?4.newSession

基础语法:

?功能:

5.range

基础语法:

?功能:

参数说明:

代码示例:

?6.sql

基础语法:

?功能:

参数说明:

代码示例:

7.table

基础语法

功能:

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

参阅


前言

Spark SQL是用于结构化数据处理的Spark模块。它提供了一种称为DataFrame的编程抽象,是由SchemaRDD发展而来。不同于SchemaRDD直接继承RDD,DataFrame自己实现了RDD的绝大多数功能。Spark SQL增加了DataFrame(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以是Hive、HDFS、Cassandra等外部数据源,还可以是JSON格式的数据。
Spark SQL目前支持Scala、Java、Python三种语言,支持SQL-92规范。
那么根据上篇文章:

PySpark数据分析基础:PySpark基础功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值