【Leetcode】2683. 相邻值的按位异或

题目

题目链接🔗

题目描述:
给定一个长度为 n 的 derived 数组,判断是否存在一个长度为 n 的二进制数组 original,使得:

  • derived[i] = original[i] ⊕ original[(i + 1) % n]

其中 ⊕ 表示按位异或运算。

思路

这道题的关键在于理解异或运算的性质:

  1. 异或的对称性a ⊕ b = b ⊕ a
  2. 异或的结合律(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
  3. 自异或为0a ⊕ a = 0

核心观察:
如果存在有效的原始数组,那么所有 derived 数组元素的异或和必须为 0。

证明:

derived[0] = original[0] ⊕ original[1]
derived[1] = original[1] ⊕ original[2]
derived[2] = original[2] ⊕ original[3]
...
derived[n-1] = original[n-1] ⊕ original[0]

将所有等式异或:

derived[0] ⊕ derived[1] ⊕ ... ⊕ derived[n-1] 
= (original[0] ⊕ original[1]) ⊕ (original[1] ⊕ original[2]) ⊕ ... ⊕ (original[n-1] ⊕ original[0])
= original[0] ⊕ original[0] ⊕ original[1] ⊕ original[1] ⊕ ... ⊕ original[n-1] ⊕ original[n-1]
= 0

每个 original[i] 都出现了两次,异或后为 0。

算法步骤:

  1. 特殊情况:如果数组长度为1,当且仅当 derived[0] = 0 时有解
  2. 一般情况:计算所有 derived 元素的异或和,如果为0则有解

代码

C++

class Solution {
public:
    bool doesValidArrayExist(vector<int>& derived) {
        // 特殊情况:长度为1
        if(derived.size() == 1) {
            return !derived[0];  // derived[0] = original[0] ⊕ original[0] = 0
        }
        
        // 计算所有元素的异或和
        int xorSum = 0;
        for(int num : derived) {
            xorSum ^= num;
        }
        
        // 当且仅当异或和为0时有解
        return xorSum == 0;
    }
};

Java

class Solution {
    public boolean doesValidArrayExist(int[] derived) {
        // 特殊情况:长度为1
        if(derived.length == 1) {
            return derived[0] == 0;
        }
        
        // 计算所有元素的异或和
        int xorSum = 0;
        for(int num : derived) {
            xorSum ^= num;
        }
        
        // 当且仅当异或和为0时有解
        return xorSum == 0;
    }
}

Python

class Solution:
    def doesValidArrayExist(self, derived: List[int]) -> bool:
        # 特殊情况:长度为1
        if len(derived) == 1:
            return derived[0] == 0
        
        # 计算所有元素的异或和
        xor_sum = 0
        for num in derived:
            xor_sum ^= num
        
        # 当且仅当异或和为0时有解
        return xor_sum == 0

复杂度分析

时间复杂度

  • O(n):需要遍历整个 derived 数组一次来计算异或和

空间复杂度

  • O(1):只使用了常数级别的额外空间

结果

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
  • 通过所有测试用例

总结

这道题的关键在于发现数学规律:

  1. 异或运算的性质:每个原始数组元素在异或计算中出现且仅出现两次
  2. 必要充分条件:derived数组所有元素的异或和为0是存在有效原始数组的充要条件
  3. 边界情况处理:长度为1的特殊情况需要单独考虑

通过数学推导,我们将一个看似复杂的构造问题转化为了一个简单的异或和计算问题,大大降低了解题复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要AC的dly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值