PaperPel

✅ 第一步:论文 PDF 文档解析模块

目标是实现以下功能:

  • 从 PDF 中提取结构化文本(标题、正文、段落)

  • 存为纯文本 .txt 或 JSON 文件,供后续嵌入使用

方案:采用 PyMuPDF (fitz) 来解析 PDF

学术PDF解析的挑战

问题 对后续流程的影响
双栏排版 文本顺序错乱 → 语义断裂
数学公式/表格 解析为乱码 → 问答失效
参考文献引用标记 干扰语义 → 检索污染
图表标题与正文分离 关键信息丢失 → 问答不完整

✅ 第二步:Embedding & FAISS 检索模块

实现功能:

  • 加载结构化解析后的文本(JSON)

  • 将摘要 + 各章节切分为段落

  • 使用 BGE / text2vec 模型生成向量

  • 构建 FAISS 索引,支持后续语义检索

​1. Embedding(嵌入)​

​核心思想​​:将文本、图像等数据转换为​​高维向量​​(一组数字),捕捉其语义或特征。

中文场景首选模型
模型 MTEB中文榜排名 关键优势 缺点 推荐指数
BAAI/bge-large-zh-v1.5 1 (64.23) 专为检索优化/支持长文本(512token) 体积较大(1.34GB)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值