模型训练、部署遇到的问题

1.在 ​​AutoDL 实例​​ 上手动设置 ​​Hugging Face 镜像​​(如 hf-mirror.com

echo 'export HF_ENDPOINT=https://hf-mirror.com' >> ~/.bashrc
source ~/.bashrc  # 立即生效

2.缓存迁移和设置

# ✅ 1. 创建目标缓存目录
mkdir -p /root/autodl-tmp/cache

# ✅ 2. 移动 huggingface 缓存(去掉重复目录名)
mv ~/.cache/huggingface /root/autodl-tmp/cache/

# ✅ 3. 删除原目录或符号链接
rm -rf ~/.cache/huggingface

# ✅ 4. 创建新的符号链接
ln -s /root/autodl-tmp/cache/huggingface ~/.cache/huggingface

# ✅ 5. 可选:设置环境变量(确保 transformers 使用这个目录)
export HF_HOME=/root/autodl-tmp/cache/huggingface
echo 'export HF_HOME=/root/autodl-tmp/cache/huggingface' >> ~/.bashrc

3.版本问题

ValueError: Due to a serious vulnerability issue in torch.load...
we now require users to upgrade torch to at least v2.6
This version restriction does not apply when loading files with safetensors
发生原因:

这是由 HuggingFace 的 transformers 库(从 v4.41.0 开始)引入的强制安全限制

  • torch.load() 存在严重安全漏洞(编号 CVE-2025-32434):

    • 攻击者可通过篡改的 .bin 权重文件执行任意代码。

  • 所以 HuggingFace 限制了旧版本 PyTorch(<2.6)加载 .bin 权重,即使你设置了 weights_only=True,也不再信任。

解决方法汇总
方法是否推荐说明
方法 1:升级 PyTorch ≥ 2.6.0推荐根本解决安全限制,兼容所有模型
✅ 方法 2:降级 transformers 到 ≤4.40.2推荐绕过版本检查,适用于 PyTorch < 2.6 用户
✅ 方法 3:确保模型完整使用 .safetensors 格式条件有限仅当模型发布了 safetensors-only 权重时可行

4.显存不足 

加载并运行 Qwen/Qwen1.5-7B-Chat 本地大模型(7B参数量) 时,显存出现了爆满:

原因说明
模型过大Qwen 7B 模型全量 FP32 加载时通常占用 16~22GB 显存
未使用混合精度(FP16)默认是 FP32 精度,内存翻倍消耗
生成参数太大max_new_tokens=512,一次生成太多token,占显存
缓存碎片/未释放PyTorch 默认会预分配并保留部分显存,导致申请新内存失败
其他进程占用显存比如你在容器或多模型环境下,还有其他程序也占用显存
方法是否推荐效果说明
开启 FP16(混合精度)⭐⭐⭐⭐ 显存直接减少约 40%~50%
减少 max_new_tokens 数量⭐⭐⭐建议从 512 改为 256 或更低
清理显存碎片 (torch.cuda.empty_cache())⭐⭐⭐每次推理前释放未使用缓存显存
设置环境变量优化显存分配⭐⭐防止碎片:export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
重启程序/杀掉旧进程⭐⭐⭐清空旧模型或推理留下的显存
✅ 使用小模型(如 Qwen-1.5B)测试⭐⭐先验证流程,避免大模型调试成本
✅ 启用 device_map="auto" 分配模型到多卡⭐⭐多GPU部署时有效,单卡无法解决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值