CUDA线程全局索引:确定当前线程处理的数据位置

线程全局索引:确定当前线程处理的数据位置

 一维索引计算​:

直接计算线程的全局一维索引:const int n = blockDim.x * blockIdx.x + threadIdx.x;

全局线程ID = 当前块在网格中的偏移量 + 线程在块内的偏移量

                   = (blockIdx.x * blockDim.x) + threadIdx.x

三维索引计算​:

// 块全局ID(三维网格→一维)
unsigned int bid = blockIdx.z * gridDim.x * gridDim.y + 
                   blockIdx.y * gridDim.x + 
                   blockIdx.x;

计算逻辑​
  • blockIdx.z​:当前块在网格的z轴索引

    • 乘以gridDim.x * gridDim.y:跳过所有前层的xy平面

  • blockIdx.y​:当前块在网格的y轴索引

    • 乘以gridDim.x:跳过当前层的前行

  • blockIdx.x​:当前块在网格的x轴索引

// 线程局部ID(三维块→一维)
unsigned int tid = threadIdx.z * blockDim.x * blockDim.y + 
                   threadIdx.y * blockDim.x + 
                   threadIdx.x;

​计算逻辑​
  • threadIdx.z​:当前线程在块的z轴索引

    • 乘以blockDim.x * blockDim.y:跳过所有前层的xy平面

  • threadIdx.y​:当前线程在块的y轴索引

    • 乘以blockDim.x:跳过当前层的前行

  • threadIdx.x​:当前线程在块的x轴索引

最终全局ID需结合两者:gid = bid * (blockDim.x*blockDim.y*blockDim.z) + tid

示例:

(1) 一维核函数(向量加法)

__global__ void add_1d(float *x, float *y, int N) {
    int n = blockDim.x * blockIdx.x + threadIdx.x;
    if (n < N) y[n] += x[n];
}
// 启动配置:<<<(N+255)/256, 256>>>

(2) 二维核函数(矩阵处理)​

__global__ void matrixMultiply(int *A, int *B, int *C, int N) {
    // 计算每个线程负责的矩阵元素位置
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
 
    if (row < N && col < N) {
        int value = 0;
        // 计算矩阵 C 的元素 C[row][col]
        for (int k = 0; k < N; ++k) {
            value += A[row * N + k] * B[k * N + col];
        }
        C[row * N + col] = value;
    }
}

注:A[row * N + k]​:访问矩阵 A的第 row行、第 k列的元素;

  B[k * N + col]​:访问矩阵 B的第 k行、第 col列的元素

(3) 三维核函数(矩阵处理)​

__global__ void process_3d(float *data, int width, int height, int depth) {
    // 计算全局3D坐标
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;
    int z = blockIdx.z * blockDim.z + threadIdx.z;
    
    if (x < width && y < height && z < depth) {
        int idx = z * (width*height) + y * width + x;
        data[idx] *= 2.0f;
    }
}
// 启动配置:dim3 block(8,8,8); dim3 grid((width+7)/8, (height+7)/8, (depth+7)/8);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值