目录
1. 引言
强化学习是一种通过学习与环境交互来最大化奖励的方法。在近年来,强化学习在各个领域都有着广泛的应用,其中最为经典的应用之一是在游戏中进行游戏玩法。在本文中,我们将介绍如何使用深度强化学习模型如DQN或DDPG在Atari游戏上进行游戏玩法,并给出相应的Python代码示例。
2. Atari游戏
Atari游戏是一种经典的街机游戏,由Atari公司于1970年代末至1980年代初开发。这些游戏是基于2D图形和简单的游戏规则,但由于其简单性和易上手性,它们在当时就获得了广泛的认可和喜爱。由于其游戏规则和可操作性的简单性,Atari游戏成为了深度强化学习模型的经典测试平台。
在本文中,我们选择了Atari游戏中的一个经典游戏Pong作为示例。在Pong游戏中,两个玩家分别控制一条长条,用于反弹一个球,并尝试让球不落在自己的一侧,从而获得更高的得分。
3. 深度强化学习模型
在本文中,我们将使用深度强化学习模型如DQN或DDPG来学习Pong游戏的玩法。在这些模型中,我们将使用深度神经网络来估计每个动作的Q值,并根据最大化总奖励的目标来学习网络权重。