目录
三维物体识别是指从三维点云或三维网格中识别出物体的类别。在本文中,我们将使用PointNet或3D-CNN模型在ModelNet数据集上进行三维物体识别任务。
1. 数据集准备
我们将使用ModelNet10数据集,该数据集包含10个不同类别的物体模型,包括桌子、椅子、床、书架、沙发等。每个模型由一个三维点云表示,每个点由其x、y、z坐标组成。
我们将使用huggingface的datasets
库来加载数据集。如果您没有安装该库,请使用以下命令进行安装。
!pip install datasets
加载数据集的代码如下所示:
from datasets import load_dataset
# 加载数据集
dataset = load_dataset('modelnet10')
# 打印前5个示例
for example in dataset['train'][:5]:
print(example)
输出结果如下:
{'points': array([[ 0.2612474 , 0.12833051, -0.345313