在本文中,我们将介绍如何使用WaveNet或Tacotron 2模型在LJSpeech数据集上进行语音合成任务。我们将分别介绍这两种模型的基本原理,然后使用TensorFlow搭建模型并训练。最后,我们将用训练好的模型进行语音合成。
1. 数据准备
1.1 下载并预处理LJSpeech数据集
首先,我们需要下载LJSpeech数据集。您可以从官方网站下载数据集。下载并解压缩后,您将获得一个包含约13,000个音频文件和一个元数据CSV文件的目录。
接下来,我们需要对数据集进行预处理。这包括:
- 将文本转换为音素表示;
- 将音频文件转换为梅尔频谱图表示。
为了将文本转换为音素表示,我们可以使用英文文本到音素的库,如g2p-en。安装这个库后,我们可以使用以下代码将文本转换为音素序列:
from g2p_en import G2p
import pandas as pd
g2p = G2p()
# 加载元数据
metadata = pd.read_csv("LJSpeech-1.1/metadata.csv", sep="|", header=None, names=["file", "text", "normalized_text"])
# 将文本转换为音素序