2023年数学建模国赛:使用Dijkstra算法求最短路径

本文介绍了Dijkstra算法的基本原理和实现,通过Matlab代码展示了如何解决图论中的最短路径问题。文章还提到了算法的复杂度,并对比了Dijkstra、Bellman-Ford和Floyd算法在处理最短路径问题时的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

订阅专栏后9月比赛期间会分享思路及Matlab代码

Dijkstra算法是一种经典的图论算法,它能够求解图中两个顶点之间的最短路径。在本文中,我们将介绍Dijkstra算法的原理及其实现,并通过Matlab代码来实现一个最短路径的实战案例。

Dijkstra算法的原理

Dijkstra算法是一种贪心算法,其基本思想是从起点开始,依次找到与其相邻的顶点中距离最短的那一个,然后再以该顶点为中心,继续向外扩展,直到找到终点为止。

Dijkstra算法是一种标号法,即给赋权图的每个顶点记一个数,称为顶点的标号。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。在算法执行过程中,我们用一个数组dist[i]来表示从起点到顶点i的最短路径长度。同时,我们用一个数组visited[i]来记录哪些顶点已经被访问过了。

具体的算法流程如下:

  1. 初始化dist数组和visited数组。将起点的dist值设置为0,将其余顶点的dist值设置为无穷大(表示还未被访问到),将visited数组初始化为false。

  2. 从起点开始,对其相邻的顶点进行标号,更新其dist值。对于未被访问过的顶点,如果从起点到该顶点的距离比已有的dist值更小,则更新其dist值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值