基于PaddleClas的PP-LCNet实现车辆颜色及车型属性识别

本文介绍了如何使用PaddleClas的PP-LCNet模型结合YOLOv5进行车辆检测和车辆颜色、车型属性识别。通过YOLOv5检测车辆,再用PP-LCNet识别属性,实现智能交通和安防监控中的车辆信息提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

软件适用于所有yolo系列识别,只需要根据需求更换.pt文件,车辆检测+行人检测+车辆识别+车牌识别+车辆跟踪与违章停车检测

yolov5/yolov8车牌识别2.0可视化QT界面

目录

源码:yolov5源码

1. 环境准备

2. 数据准备

3. 车辆检测

4. 车辆属性识别

5. 整合检测与识别流程

6. 结论


车辆属性识别是计算机视觉领域的一个重要应用场景。在智能交通、安防监控等领域,车辆颜色和车型属性的识别有助于进行车辆追踪、数据分析等任务。本文将介绍如何基于PaddleClas库中的特色模型PP-LCNet,实现对车辆颜色及车型属性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值