利用PaddlePaddle和OpenVINO构建AI“点读笔”应用

本文介绍如何利用PaddlePaddle和OpenVINO构建一个AI“点读机”,通过摄像头识别手势关键点,实现手指指向的文本读取。项目涉及文本检测、识别、语音合成,以及手部关键点检测模型(如MPII和NZSL数据集)的使用和后处理。存在的问题是推理速度较慢,未来将关注模型预测速度的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

项目简介与构想

0 背景介绍

1 “点读机”实现原理

2 关键点检测模型与数据集介绍

2.1 手势关键点检测模型

2.2 MPII数据集

2.3 NZSL数据集

3 关键点检测任务后处理

3.1 手部关键点检测API分析

3.2 寻找最小外接矩形框

3.3 矫正文本检测框位置

4 “点读”流程串接的实现与问题分析

4.1 实现代码

4.2 存在问题

4.3 提升思路


欢迎大家来到本次的技术分享,今天我们将探讨如何结合PaddlePaddle和OpenVINO,打造一个指哪读哪的AI“点读机”。这款“点读机”能够在你指向文字的时候自动进行阅读,非常适合语言学习、快速浏览文档或帮助视力障碍者阅读。

项目简介与构想

“点读机”是我们小时候学习语言的好帮手,现在,我们希望通过最新的AI技术,将“点读机”升级到新的水平。具体来说,我们将通过一个简单的摄像头,结合深度学习模型,实现一个能够识别你手指所指向的文本,并将其读出来的系统。

这个项目的核心技术包括两部分:一是文本检测与识别,二是语音合成。我们将使用PaddlePaddle进行深度学习模型的训练和部署,然后使用OpenVINO来进行模型的优化和加速。

0 背景介绍

现下,随着各种流行APP的出现,“听书”已经成为一种新的读书方式。不过,相比起电子书软件,要从实体书本中“听书”,就存在不少困难。

比如,电子书软件天然就有准确的文本输入,只需要解决语音合成问题——当然,这看似简单的一步,其实一点也不简单,比如要做好分词、断句,语音合成模型需要在海量数据集上训练等等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值