数据清洗:让数据更纯净,Python实战 机器学习&深度学习

数据清洗是机器学习和深度学习的重要预处理步骤,涉及处理缺失值、异常值、数据类型转换和一致性检查等。本文通过Python示例介绍了如何进行数据清洗,包括删除或填充缺失值,使用可视化和统计方法处理异常值,以及数据保存等步骤,以提升模型的性能和数据质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

步骤1:导入必要的库

步骤2:加载数据

步骤3:处理缺失值

3.1 删除含有缺失值的行

3.2 填充缺失值

步骤4:处理异常值

4.1 可视化方法

4.2 统计方法

步骤5:数据类型转换

步骤6:数据一致性检查

步骤7:数据保存


数据是机器学习和深度学习的基石,但真实世界中的数据往往是不完美的,包含错误、缺失值和异常值。数据清洗是数据预处理中的关键步骤,旨在使数据更加可靠和适合建模。在本文中,我们将介绍数据清洗的基本概念,并提供Python代码示例,帮助你处理不洁净的数据。

步骤1:导入必要的库

首先,让我们导入必要的Python库。

import pandas as pd
import numpy as np

步骤2:加载数据

假设我们有一个包含错误、缺失值和异常值的示例数据集。我们使用Pandas库加载数据。

# 创建一个示例数据集
data = {'A': [1, 2, np.nan, 4, 5],
        'B': [5, 4, 3, 2, 1],
        'C': ['apple', 'banana'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值