目录
数据是机器学习和深度学习的基石,但真实世界中的数据往往是不完美的,包含错误、缺失值和异常值。数据清洗是数据预处理中的关键步骤,旨在使数据更加可靠和适合建模。在本文中,我们将介绍数据清洗的基本概念,并提供Python代码示例,帮助你处理不洁净的数据。
步骤1:导入必要的库
首先,让我们导入必要的Python库。
import pandas as pd
import numpy as np
步骤2:加载数据
假设我们有一个包含错误、缺失值和异常值的示例数据集。我们使用Pandas库加载数据。
# 创建一个示例数据集
data = {'A': [1, 2, np.nan, 4, 5],
'B': [5, 4, 3, 2, 1],
'C': ['apple', 'banana'