LSTM实现多变量输入多步预测(Seq2Seq多步预测)时间序列预测(PyTorch版)

本文介绍了使用PyTorch实现LSTM进行多步Seq2Seq时间序列预测的方法,包括编码器和解码器的详细定义,以及可视化结果的展示。通过这种模型架构,可以并行预测多个时间步,提高效率,并允许使用更复杂的模型组件如GRU或Transformer。文章适合初学者,提供了模型训练和预测的基本框架结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

二、多步预测(Seq2Seq多步预测)

三、模型定义

3.1 编码器Encoder

3.2 解码器Decoder

3.3 Seq2Seq模型

四、可视化结果

完整源码


二、多步预测(Seq2Seq多步预测)

这种实现策略与 直接多输出预测 一致,不同之处就是这种策略利用到了 Seq2Seq 这种模型结果,Seq2Seq 实现了序列到序列的预测方案,由于我们的多步预测的预测结果也是多个序列,所以本问题可以使用这种模型架构。

在这里插入图片描述

定义的模型结构状态为:

【t1,t2,t3,t4,t5】 🔜 【t6,t7】

对于这种模型架构相对于递归预测效率会高一点,因为可以并行同时预测 t6 和 t7 的结果,而且对于这种模型架构可以使用更多高精度的模型,例如 Bert 、Transformer 、Attention 等多种模型作为内部的组件。

三、模型定义

对于本项目实现多步预测,显示使用的 Seq2Seq 架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值