目录
二、多步预测(Seq2Seq多步预测)
这种实现策略与 直接多输出预测
一致,不同之处就是这种策略利用到了 Seq2Seq
这种模型结果,Seq2Seq
实现了序列到序列的预测方案,由于我们的多步预测的预测结果也是多个序列,所以本问题可以使用这种模型架构。
定义的模型结构状态为:
【t1,t2,t3,t4,t5】 🔜 【t6,t7】
对于这种模型架构相对于递归预测效率会高一点,因为可以并行同时预测 t6
和 t7
的结果,而且对于这种模型架构可以使用更多高精度的模型,例如 Bert
、Transformer
、Attention
等多种模型作为内部的组件。
三、模型定义
对于本项目实现多步预测,显示使用的 Seq2Seq
架构