python DH法计算机器人的正逆运动学

本文介绍了使用Python通过DH参数计算机器人正运动学,并利用雅克比迭代法解决逆运动学问题。详细阐述了旋转和平移矩阵的定义,以及数值微分方法求解雅克比矩阵。在测试中发现,由于逆运动学可能存在多个解,实际求得的解接近于给定的初始关节值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

DH法计算机器人的正运动学

定义绕x/y/z旋转的旋转矩阵

定义绕x/y/z轴的平移矩阵

根据DH参数计算末端的位置

简单测试

雅克比迭代求解逆运动学

机器人雅克比的推导是不难,但是比较繁琐,如果已经有了正运动学,我们也可以直接用数值微分的方法求解雅克比

Jacobian 数值解法

Jacobian 迭代求解IK

测试

求出来的结果和初始计算T_tar的并不相同,这是因为机器人IK存在多个解,求出来的解是与提供的joints_init比较接近的一组关节值


DH法计算机器人的正运动学

import numpy as np
from functools import reduce
np.set_printoptions(precision=4, suppress=True)
定义绕x/y/z旋转的旋转矩阵
def rotate(axis, deg):
    AXIS = ('X', 'Y', 'Z')
    axis = str(axis).upper()
    if axis not in AXIS:
        print(f"{axis} is unknown axis, should be one of {AXIS}")
        return
    rot_x = axis == 'X'
    rot_y = axis == 'Y'
    rot_z = axis == 'Z'
    rot_mat = np.array([[(np.cos(deg), 1)[rot_x], (0, -np.sin(deg))[rot_z], (0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值