YOLOV8基于SAM的作物和杂草竞争分层全景分割解决方案

文章介绍了在农业计算机视觉领域,如何使用YOLOv8和SAM结合进行作物和杂草的全景分割。在第八届CVPPA研讨会的挑战中,提出的模型在PhenoBench数据集上达到了81.33的PQ+分数。方法通过整合DINO和YOLOv8的目标检测模型,与SAM的实例分割效果,实现了对农业图像的全面理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

农业中的全景分割是一种先进的计算机视觉技术,可以全面了解田间组成。它促进了各种任务,例如作物和杂草分割、植物全景分割和叶实例分割,所有这些都旨在应对农业挑战。探索全景分割在农业中的应用,第八届植物表型和农业计算机视觉研讨会(CVPPA)使用PhenoBench数据集举办了作物和杂草分层全景分割的挑战。为了解决本次竞赛中提出的任务,我们提出了一种方法,该方法将用于实例分割的分段AnyThing模型(SAM)的有效性与来自对象检测模型的提示输入相结合。具体来说,我们在对象检测中集成了两种值得注意的方法,即DINO和YOLO-v8。根据比赛的评估指标,我们表现最好的模型获得了 81.33 的 PQ+ 分数。

农业中的全景分割是一种先进的计算机视觉技术,可以提供对农田组成的全面了解。它促进了各种任务,如作物和杂草分割,植物全景分割,和叶片实例分割,所有旨在解决农业中的挑战。探索ap全景分割在农业中的应用,第八届植物表型和农业计算机视觉研讨会(CVPPA)举办了使用PhenoBench数据集对作物和杂草进行分层全景分割的挑战。为了解决在这个com请愿书中提出的任务,我们提出了一种方法,结合了分割任何模型(SAM)的效果实例分割与来自目标检测models的提示输入。具体来说,我们在目标检测中集成了两种值得注意的方法,即DINO和YOLO-v8。基于竞赛的评估指标,我们最好的表现模型实现了81.33的PQ+分数。1. 介绍深度学习通过使机器解释和理解视觉数据,取得了显著的成就,彻底改变了计算机视觉领域。在农业领域,由深度学习驱动的计算机视觉具有一种名为全景分割的尖端边缘技术。全景分割是计算机视觉最近出现的一项任务,结合了语义分割和实例分割分割,以提供对农业景观的全面理解。为了进一步探索全景分割在农业中的优势,第8届计算机Vi研讨会(CVPPA)举办

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值