引言
传染病的爆发一直是全球公共卫生领域的重要挑战。为了更好地应对传染病,预测疫情传播趋势成为至关重要的任务。深度学习模型,如长短时记忆网络(LSTM)和Transformer,已在时间序列数据分析领域取得显著进展。本博客将向您展示如何使用这两种深度学习模型来进行疾病传播预测,提供清晰的思路和相应的Python代码,以帮助您理解和应用这一关键任务。
第一部分:数据收集与准备
在进行疾病传播预测之前,我们需要获取疫情数据,包括感染人数、康复人数、死亡人数等,然后对数据进行适当的预处理。疫情数据通常可以从卫生部门、世界卫生组织或其他相关机构获得。为了简化示例,我们将使用一个虚构的传染病数据集。
1.1 数据集介绍
我们的数据集包括以下信息:
- 日期(date)
- 感染人数(infected)
- 康复人数(recovered)
- 死亡人数(deceased)
数据的时间间隔通常为每日一次。