自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 NerF中的体渲染原理学习笔记

体渲染通过射线采样计算像素颜色。核心原理是沿相机射线r(t)=o+td采样粒子,输入粒子位姿到MLP获取密度和颜色,再积分累加得到像素RGB值。主要步骤:1.根据相机参数生成射线;2.沿射线采样粒子并获取其密度和颜色;3.进行离散积分计算光线透射率T(s)和最终颜色。该方法通过稀疏采样实现高效计算,避免了连续积分的复杂性。

2025-09-03 10:54:42 316

原创 【CVPR论文解读】SUM Parts:首个城市三维网格部件级语义分割数据集全解析

介绍SUMParts,首个面向城市三维纹理网格的部件级语义分割基准数据集。论文通过开发混合2D/3D的交互式标注工具,支持三角面片与纹理像素的双重标注,构建了覆盖2.5平方公里、21类语义标签的数据集(含13类面标签和8类纹理标签)。重点介绍了数据集的格式存储以及标注方法。

2025-07-31 09:32:09 679

原创 【深度学习系列】YOLOv1目标检测算法流程

YOLO系列目标检测算法综述:YOLOv1作为开创性单阶段检测模型,通过将图像划分为7×7网格并直接预测边界框和类别,实现了端到端的实时检测。其核心创新在于抛弃传统两阶段方法,采用全卷积网络一次性输出检测结果。虽然存在小目标检测差、输入尺寸固定等局限,但为后续发展奠定基础。从YOLOv2到最新v8版本,通过引入Anchor机制、多尺度训练、FPN结构等持续优化,在精度和速度上不断突破。该系列算法因其高效性和工程友好性,成为目标检测领域的重要里程碑。

2025-07-15 18:35:31 618

原创 【深度学习系列--经典论文解读】Very Deep Convolutional Networks for Large-Scale Image Recognition

VGGNet是深度学习发展史上的里程碑式模型,通过系统性研究网络深度与性能的关系,确立了"更深网络=更好性能"的重要结论。其创新性在于统一使用3×3小卷积堆叠,构建了11-19层的深度网络,在2014年ImageNet竞赛中表现优异。VGG的模块化设计理念、小卷积核策略和深度验证方法,为后续ResNet等模型奠定了基础。尽管存在参数量大、计算成本高等局限,但其简洁结构和迁移能力至今仍具参考价值,深刻影响了卷积神经网络的发展方向。

2025-07-15 12:43:44 1126

原创 【深度学习系列--经典论文解读】ImageNet Classification with Deep Convolutional Neural Networks

AlexNet是深度学习的里程碑式论文,开创了计算机视觉的新时代。该论文提出的深度卷积神经网络在2012年ImageNet比赛中以15.3%的错误率远超传统方法(26.2%),主要创新包括:使用ReLU激活函数加速训练、Dropout防止过拟合、GPU并行计算解决显存限制、数据增强提升泛化能力。虽然存在计算成本高、LRN效果有限等局限,但其深度架构设计理念(5卷积层+3全连接层)和训练方法为后续VGG、ResNet等模型奠定了基础,推动了从手工特征向数据驱动学习的范式转变。

2025-07-14 10:33:13 1026

原创 【小白深度学习系列】目标检测与分割的基础核心概念

通过上采样(如转置卷积或上采样操作)将高层特征图的分辨率增加,使之与低层特征图的分辨率匹配,后将这些特征图与对应的低层特征图进行融合(通常是通过逐元素相加)。对于逻辑回归或神经网络的输出层使用softmax函数的情况,置信度评分可以直接从softmax函数的输出中获得,即每个类别的预测概率。在多个尺度上提取的特征,这些特征可以来自原始图像的不同分辨率,或者来自卷积神经网络(CNN)中不同层次的特征图主干网络(Backbone)去冗余框,提高检测效率。是目标检测的扩展,它不仅识别和定位图像中的每个物体,还。

2025-07-11 14:17:41 723

原创 【深度学习系列】ResNet网络原理与mnist手写数字识别实现

ResNet(残差网络)通过引入残差模块和跳跃连接解决了深层网络的梯度消失和网络退化问题。其核心思想是让网络学习输入与输出之间的残差(F(x))而非直接映射(H(x)),简化了优化过程。

2025-07-11 14:17:00 1282

原创 Linux Ubuntu服务器配置深度学习环境-PyTorch版

环境配置

2025-07-10 13:19:24 57

原创 【深度学习系列--经典论文解读】Gradient-Based Learning Applied to Document Recognition

该论文首次将卷积神经网络(CNN)成功应用于文档识别任务,提出了经典的LeNet-5架构,通过局部连接、权重共享等创新设计,实现了端到端的手写字符识别。论文还提出图变换网络(GTN)用于统一优化文档识别的各个模块,在MNIST数据集上取得当时最优性能,并实际应用于银行支票识别系统。虽然存在训练数据依赖性强、实现复杂度高等局限,但该工作奠定了现代深度学习文档识别的基础范式,其"自动特征学习"和"全局优化"的核心思想至今仍具指导意义。

2025-07-10 13:18:49 901

原创 【小白深度学习系列】深度学习调参艺术:告别玄学,掌握科学优化模型性能的核心策略

深度学习模型调参对性能影响显著,需科学策略。核心参数包括学习率、批大小、优化器等,合理设置可提升训练效果。调参应遵循分步尝试、验证反馈的流程,结合准确率、F1值等多指标评估。可视化训练曲线有助于诊断过拟合、学习率不当等问题。常见问题如精度停滞、验证集效果差等可通过调整参数和模型结构解决。关键注意事项包括建立基线、记录实验和综合分析指标。系统化的调参是提升模型性能的重要环节

2025-07-09 09:39:21 496

原创 【深度学习系列】MNIST手写数字识别--PyTorch版

摘要:本文介绍了一个基于PyTorch的MNIST手写数字识别项目。使用包含7万张28×28灰度图像的经典数据集,构建了包含卷积层、ReLU激活、池化层和Dropout的CNN模型。通过Adadelta优化器和学习率调度器进行训练,最终测试准确率达到99.26%。文章详细解析了数据处理、网络结构和训练流程,并分析了模型在模糊数字上的识别困难。该项目作为深度学习入门实践,完整代码已开源,适合初学者学习图像分类任务的基本实现方法。

2025-07-09 09:34:03 1434

原创 【深度学习系列】一文看懂 CNN 卷积神经网络原理

介绍了卷积神经网络(CNN)的核心结构和工作原理。

2025-06-13 16:12:16 309

原创 javaweb_aop注解方式实现权限用户检验

③新建使用切面类的类,在该类(或里面的方法)上增加自定义的注解,在该类里编写需要先检验权限的方法。一、功能实现:使用aop的注解方式实现用户进行指定操作前检验用户是否有管理员权限。④配置spring.xml文件,getBean一个类的对象,使用对象的方法。3.2新建自定义注解,自定义注解中也是属性自定义的。3.1实现连接数据库用户登录,显示登录信息。3.6保存session到全局的类。②定义切面类和增强方法。3.5配置Spring.xml。3.4使用切面类的类。

2025-06-10 14:53:39 219

原创 Xshell部署springboot+postgresql项目到阿里linux云服务器Centos

6、使用pg_dump备份本地的数据库,包括数据库里面的所有数据了。在把备份的结果rz上传到服务器,再新建的数据库,把备份文件导入 psql -U -d *.sql。对于数据库安装时候的初始密码以及登陆方式都需要再注意,本文遇到了安装之后不知道初始密码,以及无法在xshell登陆的问题,通过指令查询修改密码与在conf文件修改了登陆的方式为密码认证的方式。7、springboot项目修改数据库连接,打包jar,rz上传,服务启动排错,服务后台运行 jar -jar命令,查看状态日志的方式。

2025-06-10 14:43:52 145

原创 【3D视觉入门系列】点云数据全解析:典型处理流程与可视化指南

一文带你深入理解点云的典型处理流程和可视化工具

2025-06-08 16:02:17 291

原创 【深度学习系列】从模型到训练,逐步掌握深度学习核心术语和原理

一文带你快速理解深度学习的核心概念及其原理

2025-06-07 22:34:16 1722

原创 【深度学习系列】图像数据的典型处理流程和注意事项

从拍图到喂模型,深度学习图像处理的全流程拆解

2025-06-06 10:42:29 806

原创 使用Git上传本地仓库到github仓库全过程记录

小白快速掌握使用git和GitHub进行版本控制和团队协作

2025-06-05 13:15:13 1189

原创 【小白深度学习系列】波士顿房价预测--梯度下降法

采用梯度下降法优化参数w和b,通过最小化均方误差损失函数来拟合线性关系z=wx+b。个人学习记录。

2025-06-04 16:45:47 1283

原创 记录解决关于空指针错误问题的原因

空指针

2023-02-22 10:16:51 69

原创 记录解决Error:android studio Installation did not succeed. The application could not be installed.

记录

2023-02-21 09:48:28 75

原创 安卓实现后台持续定位学习记录

百度地图的后台定位sdk很有帮助

2023-02-02 17:33:11 142

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除