以前每天工作12个小时,之后成功转行软件测试,现在来分享我的转行经历

本文详细介绍了软件测试的学习路径,包括基础知识、测试分类、流程、需求分析、自动化测试、接口测试、性能测试等内容,指导转行者选择自学还是报班,并强调了技能要求和职业发展建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

学习路线图:

1.测试基础知识

1>测试分类:

2>测试流程

3>测试需求分析

4>测试计划

5>测试用例

6>测试评审

7>缺陷管理流程及规范

8>数据库

9>Linux

10>执行测试

11>测试报告

12>移动端测试

13>兼容性测试

2.自动化测试 

3.接口测试

4.性能测试


IT行业薪资待遇普遍很高,一名优秀的技术工程师的工资是传统行业普通员工的几倍之多,这已经是不争的事实。所以,每年转行IT的人不在少数。大家都希望靠学一技之长,改变命运。其中因为软件测试相对好入门,脑力强度并不大,并且薪资发展并不输给程序员,成为近几年转行IT人士的首要选择。如果你也有考虑转行学软件测试,希望这篇文章能对你有所帮助。

什么样的人适合学习软件测试?

1、首先,是学历;

最好是专科及以上学历,虽然,有一些企业,更看重技术能力,对学历没有明确要求,虽然学历并不代表能力,但是,如果有学历,就会得到更多让别人看到你能力的机会,同样你自己也会有更多选择的权利。如果学历在专科以下,请慎重选择,或是提升一下吧,无论以后是否从事IT行业的工作,对于求职都是有帮助的。

2、其次,是年龄;

最佳年龄条件是在21-30周岁。当然并不是这个条件之外的人并不能去学,只是需要比其他人付出的更多。如果年龄超过了35岁,就不太建议学了。

对于学软件测试,在专业,性别,等方面都是没有太多要求的,但是对于学习能力还有逻辑思维能力方面有一定的要求,也就是说无论是文科,还是理科,无论是男生,还是女生,只要具备一定的学习能力,逻辑思维能力,都是可以学的。

比如在我们公司是先进行学前检测,检测通过后,技术老师确保能把你教会,才可以来学,并不会盲目的让大家去学习。

自学,还是报班学?

我们先分析一下两者的优劣势!

-自学 优势:需要自己投入的资金比较少, 劣势:存在学习的时间比较长,学习不系统,坚持难,上岗工资低,甚至上岗难等问题!

-报班 优势:跟着老师系统学习,有疑问能及时得到解答; 学习时间短,少走很多弯路; 可以接触到多个项目,对于面试求职有直接性帮助。 劣势:需要有一定的资金投入;

对于只是抱着试试态度学的,建议先自学看看!成本低。。。

如果想学有所成,并且高薪入职,建议报班学!

学习路线图:

1.测试基础知识

一些测试必备文档以及概念要掌握,这是最基本的

1>测试分类:

按测试技术划分为:

黑盒测试:即功能测试,也就是我们俗称的点点点,但是不要简单以为只是这样,点点点的前提是对整个项目的业务了然于心

白盒测试:可以看到项目的代码,属于逻辑结构的测试

灰盒测试:介乎黑白之间

按是否需要运行代码分为:

静态测试:主要是侧重于界面

动态测试:运行代码,输入数据

按软件特性分为:

功能测试:验证所有功能点是否和产品预期相符

性能测试:负载测试,压力测试,数据库容量测试

2>测试流程

需求评审,项目立项 —— 技术评审,分解架构 —— 用例评审,需求一致 —— 分解业务,执行测试

3>测试需求分析

这个是首要的,一个测试人员要对项目有足够的了解,可以这么说,对一个项目了解最清楚的除了产品,就是测试了,要学会拆解需求,提高自己的业务能力

4>测试计划

一般大公司都会有标准的测试计划,我们没有哦,不过,测试计划都是测试经理基于需求分析编写的,测试人员按照计划测试即可

5>测试用例

测试用例方法很多,像等价类,因果图,边界值,正交排列,场景法,一般公司会有自己的一套用例规范,找同事要模板即可

6>测试评审

测试评审包括需求评审,测试计划评审,测试用例评审,之前对于测试用例的一些注意点专门有一篇,感兴趣的小伙伴可以去看看

7>缺陷管理流程及规范

一个bug从新提交之后会有一个生命历程,所以就把它分为几个状态,用工具来管理修复上线的进程,像现在市面上很多管理工具,像禅道,bugout,可以根据公司要求去学习掌握

8>数据库

数据库也是测试的一个重点,上一篇讲的是mysql安装和一些基本语法,因为是日常测试,所以掌握基本即可,面试,笔试可能问的较多,实际应用不多

9>Linux

一个操作系统,看项目,主要掌握常用命令,能安装软件即可

10>执行测试

系统测试:按照测试用例系统把项目整体测试一遍,跟进bug修复状态,确保上线

回归测试:项目上线之后,要整体在回归一遍,避免遗漏,有时候,环境也是个坑,环境会影响有些功能,所以,回归测试,主要是在用例发现问题之前把问题尽快消灭

11>测试报告

测试完成之后,对现有测试情况进行一个总结,邮件、文档皆可,看具体要求

12>移动端测试

对于APP、H5页面的项目来说,真机测试必不可少,可以与PC对比学习

13>兼容性测试

PC兼容:浏览器内核

APP,H5兼容:手机系统,浏览器

对于兼容来说,大的功能不会有影响,主要是一些样式的展示和前台交互问题

2.自动化测试 

自动化测试主要应用于比较成熟的项目,基本页面结构,框架设计不会有大的变动,学习成本和维护成本较大,目前自己把大概的框架写出来了,不过项目还在初期,后期会一直维护

推荐工具:selenium+testng

推荐语言:Java   python  

3.接口测试

因为工作不久,还没接触到接口测试,不过,接口测试是必须要学习的一个方向

一些协议,请求方法,还有抓包工具,状态码要熟练掌握

4.性能测试

一个网站能否承载起用户的访问量,承载极限是多少,是性能测试的重点

推荐工具:LoadRunner、Jmeter

写在最后:

一位哲学家曾说过,如果将人生一分为二,

前半段人生哲学是‘不犹豫’,

后半段人生哲学是‘不后悔’!

想做什么,就要大胆的去尝试!不要让人生留有遗憾!

如果你也对IT感兴趣,对生活有追求,欢迎你来顶测科技寻找新的机遇。

B站最牛的Python自动化测试框架全栈测试开发实战项目入门到精通,涨薪必备教程!!!

<think>嗯,用户是一位软件测试工程师,想要了解如何转向AI领域的具体路径和方法。从用户提问的措辞看,ta对职业转型有明确目标但缺乏具体方向,可能需要系统性的转型指南。 用户之前的测试经验其实是宝贵资产。引用[2]提到现代测试工程师需要掌握"全栈质量保障",其中涉及支付、物流、算法等模块测试经验——这些恰恰是AI落地的重要场景。而引用[4]强调的性能测试工具(Jmeter等)经验,也能迁移到AI系统的压力测试中。 注意到引用[1][3]都提到AI学习需要体系化。用户可能被碎片化信息困扰,需要帮助梳理知识图谱。测试工程师转AI的优势在于:1) 对软件质量有深刻理解 2) 熟悉产品全生命周期 3) 缺陷定位能力可迁移到模型调优。 考虑设计阶梯式转型路径:先立足测试领域接触AI模块(最平滑),再向MLE/AI测试专家发展。避免建议用户直接放弃测试经验从零开始——引用[3]警告过"不能系统的学习就相当于是白学"。 需要特别提醒模型测试这个新兴方向。用户现有的测试技能+新增的AI知识就能胜任,且行业需求旺盛(引用[4]提到性能测试工具经验可直接复用)。这可能是比纯算法岗更现实的切入点。</think>软件测试工程师转向AI领域是可行的职业跃迁路径,以下是系统性转型方案,结合你的测试经验最大化优势: --- ### **一、转型核心路径(分阶段)** #### **阶段1:基础能力筑基(3-6个月)** | **能力模块** | **具体行动** | **测试经验迁移点** | |--------------------|-----------------------------------------------------------------------------|-------------------------------------------| | **数学与算法** | 精研线性代数/概率论(重点:矩阵运算、贝叶斯理论)<br>- 实践:用Python实现聚类/分类算法(如K-Means) | 测试用例设计中的边界值分析 → 模型特征工程中的异常值处理 | | **编程深化** | Python进阶(NumPy/Pandas数据处理)+ SQL优化<br>- 每日LeetCode刷题(侧重字符串/数组处理) | 自动化测试脚本经验 → 模型数据预处理代码开发 | | **AI基础认知** | 学习机器学习流程(数据→特征→模型→评估)<br>- 实践:Kaggle入门竞赛(Titanic数据集) | 测试计划制定 → 机器学习项目Pipeline设计 | #### **阶段2:垂直领域突破(6-9个月)** 1. **AI质量工程方向(测试经验强相关)** - 掌握模型验证技术: - 模型漂移检测(KS检验/PSI指标) - 对抗样本测试(Foolbox库) - 公平性验证(AI Fairness 360工具包) - 学习框架:MLflow跟踪实验,PyTest扩展模型测试用例 - **优势转化**:直接复用测试工程师的缺陷定位思维,例如: > 将**接口测试中的参数边界验证** → 迁移到**模型输入特征鲁棒性测试** [^4] 2. **算法工程方向(需较强数学基础)** - 主攻CV/NLP应用层: - 目标检测(YOLO实战) - 文本分类(BERT微调) - 部署能力:Docker容器化模型 + RESTful API封装 #### **阶段3:项目实战(3个月+)** ```python # 测试人转型AI的黄金项目结构 def ai_project_for_tester(): 1. 选择垂直场景(如电商推荐系统/金融风控) 2. 构建测试思维驱动的验证方案: - 模拟数据偏移:制造训练集/线上数据分布差异 - 设计模型压力测试:突发流量下的响应延迟监控 3. 输出标准化报告: • 模型稳定性指标(如周环比AUC波动) • 资源消耗基线(GPU内存/推理耗时) ``` --- ### **二、关键资源清单** | **类型** | **推荐资源** | |----------------|-----------------------------------------------------------------------------| | **课程** | - 《机器学习》(吴恩达Coursera)<br>- 极客时间《AI工程落地实战》 | | **工具栈** | TensorFlow Model Analysis(模型评估) + Evidently AI(漂移检测) | | **社区** | Kaggle竞赛(从Notebook组学习) + Hugging Face(开源模型) | | **认证** | AWS机器学习专项认证 / Google机器学习工程师认证 | --- ### **三、转型策略建议** 1. **内部转岗优先** - 争取参与公司AI项目的测试环节(如对话系统评测) - 主动承担数据标注质量管理 → 逐步接触特征工程 2. **简历重塑技巧** 将测试经验转化为AI竞争力: > “设计自动化测试框架(Python+Pytest)” → **升级表述**: “构建MLOps管道中的自动化验证层,覆盖模型版本A/B测试与数据一致性校验” 3. **薪资谈判要点** - 初级AI岗:突出测试经验带来的质量保障能力(降低模型线上事故风险) - 资深岗:强调复杂系统调试经验(定位模型失效根本原因) --- ### 典型转型案例 某电商测试工程师转型路径: `功能测试 → 推荐系统测试(埋点数据校验) → 特征监控开发 → 推荐算法工程师` **关键跳板**:在测试阶段发现特征数据泄露问题,提出改进方案被算法团队采纳。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值