R语言:ROC 曲线绘制及AUC、截断值、灵敏度、特异度、准确度等结果计算

 R语言:ROC 曲线绘制及AUC、截断值、灵敏度、特异度、准确度等结果计算

        ROC曲线的横坐标为假阳性率(假阳性率,FPR)即1-特异度;纵坐标为真阳性率(真阳性率,TPR),也称为灵敏度。
        通常我们可以计算ROC的曲线下面积(roc曲线下面积,auc)表示预测模型的好坏。auc的值介于0.5~1.0,较大的auc代表了较好的预测效果。
        AUC为0.5时,即完全随机,说明该模型没有预测作用;AUC为1时,即完全一致说明该模型的预测结果与实际结果完全一致。在实际应用中,很难找到完全一致的预测模型。AUC在 0.50~0.70为较低准确度,AUC在0.71~0.90为中等准确度,AUC高于0.90为高准确度。

代码如下:(基于二分类资料的ROC 曲线绘制)

# 利用 library()函数加载pROC包,利用包中的read_xlsx(file.choose())读取 xlsx格式数据

library(pROC)
mydata<-read_xlsx(file.choose())

47164e9031174a2799b0bcd963469d91.png
str(mydata)
head(mydata,1)
roc1 <- roc(outcome~TSH,data=mydata)

#将结果在roc1中,TSH为其中检验变量,outcome为结局变量。
auc(roc1) #求AUC面积
ci.auc(roc1)#求置信区间
coords(roc1, x="best", ret="all", transpose = FALSE)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值