
搜广推
文章平均质量分 89
推荐算法学习
古希腊掌管学习的神
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[搜广推]深度学习推荐模型(9)——序列模型在推荐系统中的应用:DIEN
DIEN是DIN模型的进化版本,在MLP的基础上引入先验知识(用户对目标广告的感兴趣程度)来提高模型准确性,因此要考虑如何对兴趣建模。原创 2024-12-27 12:50:22 · 1217 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(8)——DIN详解
DIN利用注意力机制来捕捉用户历史行为与候选广告之间的相关性,从而为每个候选广告动态地调整用户行为特征的权重。原创 2024-12-27 11:43:54 · 2237 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(7)——注意力机制在推荐模型中的应用
注意力机制”来源于人类最自然的选择性注意的习惯。最典型的例子是用户在浏览网页时,会选择性地注意页面的特定区域,忽视其他区域。基于这样的现象,在建模过程中考虑注意力机制对预测结果的影响,往往会取得不错的收益。原创 2024-12-26 21:18:39 · 923 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(6)——FM 与深度学习模型的结合
FM模型的提出是为了引入多维度特征交叉。原创 2024-12-26 16:57:50 · 1056 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(5)——Wide&Deep模型
Wide & Deep模型由Google在2016年提出。它旨在结合线性模型(Wide部分)的记忆能力和深度学习模型(Deep部分)的泛化能力,以解决推荐系统中的记忆性(Memorization)和泛化性(Generalization)问题。原创 2024-12-25 18:00:29 · 1199 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(4)——PNN模型
PNN认为在CTR预估中,特征之间的关系更多是一种“且”的关系,而非“加”的关系,因此提出了基于乘法的运算来体现特征交叉的网络结构原创 2024-12-25 17:30:18 · 891 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(3)——NeuralCF模型
NeuralCF模型是一种结合了深度学习和协同过滤的推荐系统模型,它通过学习用户和物品的低维向量表示,并利用多层感知器捕捉它们之间的非线性关系,以提高推荐准确性和泛化能力。NeuralCF模型的灵感来自于矩阵分解模型。原创 2024-12-25 16:57:06 · 378 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(2)——Deep Crossing 模型
如果说AutoRec模型是将深度学习的思想应用于推荐系统的初步尝试,那么DeepCrossing模型就是一次深度学习架构在推荐系统中的完整应用。AutoRec模型讲解详见Deep Crossing 模型是一种深度学习架构,用于解决推荐系统中的特征交叉问题。原创 2024-12-25 16:17:12 · 1203 阅读 · 0 评论 -
[搜广推]深度学习推荐模型(1)——AutoRec
AutoRec模型是一种基于协同过滤的深度学习推荐系统算法,它通过自编码器学习用户或物品的隐式特征向量,利用这些向量来预测用户对未评分物品的评分,根据评分进行推荐。原创 2024-12-25 15:30:54 · 1018 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
曝光过滤主要在召回阶段做,主要方法是Bloom Filter。原创 2024-12-24 19:07:35 · 1120 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——其他召回通道
其他召回方法原创 2024-12-23 22:51:19 · 281 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——Deep Retrieval 召回
Deep Retrieval 是一种推荐系统框架,它将物品表示为路径(path),并在线上查找与用户最匹配的路径。这种方法与传统的双塔模型不同,后者通常将用户和物品表示为向量,并在线上进行最近邻查找。Deep Retrieval 与阿里的 TDM(Tree-based Deep Model)有相似之处。原创 2024-12-23 22:36:47 · 1398 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——双塔模型
双塔模型详解原创 2024-12-20 13:47:19 · 1215 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——矩阵补充&最近邻查找
有一个用户-物品交互矩阵,其中行代表用户,列代表物品,矩阵中的元素代表用户对物品的评分。由于用户通常只对少数物品进行评分,这个矩阵往往是稀疏的。因此需要补全这个矩阵。原创 2024-12-20 10:48:24 · 999 阅读 · 0 评论 -
[搜广推]共访矩阵Co-visitation Matrix
共访矩阵原创 2024-12-16 20:50:54 · 664 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——基于用户的召回
基于用户的协同过滤(UserCF)是一种经典的推荐系统算法,其核心思想是利用用户的历史行为数据来预测用户可能感兴趣的物品。原创 2024-12-16 17:47:19 · 865 阅读 · 0 评论 -
[搜广推]王树森推荐系统笔记——Swing模型
Swing模型是基于物品的协同过滤(Item-based Collaborative Filtering)推荐算法原创 2024-12-16 16:59:09 · 361 阅读 · 0 评论 -
[搜广推]王树森推荐算法笔记——基于物体的协同过滤
基于物体的协同过滤(Item-Based Collaborative Filtering,简称ItemCF)是一种经典的推荐系统算法。原创 2024-12-13 20:24:02 · 859 阅读 · 0 评论 -
[搜广推] 王树森推荐算法——概要
王树森推荐算法笔记整理01——概要原创 2024-12-12 17:12:33 · 1773 阅读 · 0 评论