机器学习fit方法

在机器学习中,通常通过调用 fit 方法来训练模型。不同的机器学习库和模型类可能具有不同的参数,但是有一些通用的参数在大多数情况下都存在。

以下是常见的 fit 方法中的一些通用参数及其意义:

  1. X

    • 输入特征数据,通常是一个数组、矩阵或数据框,包含了训练模型所需的特征。
  2. y

    • 目标变量数据,通常是一个数组、向量或序列,包含了每个样本对应的目标值或标签。
  3. sample_weight

    • 样本权重,用于指定每个样本的权重,通常用于处理不均衡的数据集或者强调某些样本的重要性。
  4. batch_size

    • 批量大小,用于指定在每次模型更新时所使用的样本数量。较小的批量大小可能会加速训练过程,但可能会降低训练的稳定性。
  5. epochs:时代:

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值